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® Abstract

In this paper we discuss a new model for document clustering which has been adapted using non-negative
matrix factorization during our research. The key ideaisto cluster the documents after measuring the proximity
of the documents with the extracted features. The extracted features are considered as the final cluster labels and
clustering is done using cosine similarity which is equivaent to k-means with a single turn. An application was
developed using apache lucene for indexing documents and mapreduce framework of apache hadoop project
was used for parallel implementation of kmeans algorithm from apache mahout project. Since experiments were
carried only in one cluster of Hadoop, the significant reduction in time was obtained by mapreduce
implementation when clusters size exceeded 9 i.e. 40 documents averaging 1.5 kilobytes. Thus it’'s concluded
that the feature extracted using NMF can be used to cluster documents considering them to be fina cluster
labels as in kmeans, and for large scale documents the parallel implementation using mapreduce can lead to
reduction of computational time.
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1. Introduction

The need for the organisation of data is a must for a quick and efficient retrieval of information. A robust
means for organisation of data in any organisation has been the use of databases. Databases like the relational,
object-oriented or object-relationa databases, al have well structured format to keep data. Not al information
that an organisation generates is kept or can be kept in databases. Information is stored in the huge amount in
form of unstructured or semi-structured documents. Organising these documents into meaningful groups is a
typica sub-problem of Information Retrieval, in which there is need to learn about the genera content of data,
Cutting D et d. [1].

1.1 Document clustering

Document clustering can loosely be defined as "clustering of documents'. Clustering is a process of
understanding the similarity and/or dissimilarity between the given objects and thus, dividing them into
meaningful subgroups sharing common characteristic. Good clusters are those in which the members inside the
cluster have quite adeal of similar characteristics. Since clustering falls under unsupervised learning, predicting
the documents to fal into certain class or group isn't done. The methods of document clustering can be

categorized into two groups;

a. Document partitioning (Flat Clustering)
This approach divides the documents into digoint clusters. The various methods in this category are :
k-means clustering, probabilistic clustering using the Naive Bayes or Gaussian model, latent semantic indexing

(LSI), spectra clustering, non-negative matrix factorization (NMF).

b. Hierarchical clustering
This approach finds successive clusters of document from obtained clusters either using bottom-up

(agglomerate) or top-bottom (divisive) approach.

1.2 Feature extraction

Traditiona methods in document clustering use words as measure to find similarity between documents.
These words are assumed to be mutually independent which in real application may not be the case. Traditional
VSl uses words to describe the documents but in reality the concepts/semantics/features/topics are what
describe the documents. The extraction of these features from the documents in caled Festure Extraction. The
extracted features hold the most important idea/concept pertaining to the documents. Feature extraction has been
successfully used in text mining with unsupervised algorithms like Principal Components Analysis (PCA),
Singular Value Decomposition (SVD), and Non-Negative Matrix Factorization (NMF) involving factoring the

document-word matrix [5].
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1.3 Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is anovel Information Retrieval technique that was designed to address the
deficiencies of the classic VSM model. In order to overcome the shortcomings of VSM model, LS| estimate the
structure in word usage through truncated Singular Vaue Decomposition (SVD). Retrieval is then performed
using a database of singular vaues and vectors obtained from the truncated SVD. Application of Latent

Semantic Indexing with results can be found in Berry et a. [14] and Landauer et a in [15].

1.4 Non-negative matrix factorization (NMF)

Non-negative matrix factorization is a special type of matrix factorization where the constraint of
non-negativity is on the lower ranked matrices. It decomposes a matrix Vmn into the product of two lower rank
matrices Wmk and Hkn, such that Vmn is approximately equal to W times Hyp, .

Vi = WD Hp @)

Where, k << min(m,n) and optimum value of k depends on the application and is aso influenced by the
nature of the collection itself [13]. In the application of document clustering, k is the number of features to be
extracted or it may be called the number of clusters required. V contains column as document vectors and rows
as term vectors, the components of document vectors represent the relationship between the documents and the
terms. W contains columns as feature vectors or the basis vectors which may not dways be orthogonal (for
example, when the features are not independent and have some have overlaps). H contains columns with
weights associated with each basis vectorsin W.

Thus, each document vector from the document-term matrix can be approximately composed by the linear
combination of the basis vectors from W weighted by the corresponding columns from H. Let vi be any
document vector from matrix V, column vectors of W be {W; , W5 ,,...,W } and the corresponding components
from column of matrix H be { hi1 ,hi2 ,...,hix } then,

Vi=W,0 hy0 W0 hpO ... O Wild hy 2

NMF uses an iterative procedure to modify the initial values of Wmk and Hkn so that the product approaches
Vmn . The procedure terminates when the approximation error converges or the specified number of iterations
is reached. The NMF decomposition is non-unique; the matrices W and H depend on the NMF agorithm
employed and the error measure used to check convergence. Some of the NMF agorithm types are,
multiplicative update algorithm by Lee and Seung [2], sparse encoding by Hoyer [10], gradient descent with
constrained least squares by Pauca[11] and aternating least squares algorithm by Pattero [12]. They differ in the
measure cost function for measuring the divergence between V and WH or by regularization of the W and/or H
matrices.

Two simple cost functions studied by Lee and Seung are the squared error (or Frobenius norm) and an
extension of the Kullback-Leibler divergence to positive matrices. Each cost function leads to a different NMF
algorithm, usually minimizing the divergence using iterative update rules. Using the Frobenius norm for

matrices, the objective function or minimization problem can be stated as
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where W and H are non-negative. The method proposed by Lee and Sung [2] based on multiplicative update

rules using Forbenus norm, popularly called multiplicative method (MM) can be described as follows.

1.4.1 MM Algorithm
(1) Initidize W and H with non-negative val ues.

(2) Iterate for each c, j, and i until within approximation error converge or after | iterations:

@ 1wk @
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In steps 2(a) and (b), e, a smal positive parameter equa to 10°, is added to avoid division by zero. As
observed from the MM Algorithm, W and H remain non-negative during the updates.

Lee and Seung (2] proved that with the above update rules objective function (1) achieve monotonic
convergence and is non-increasing, they becomes constant if and only if W and H are at a stationary point. The

solution to the objective function is not unique.

1.5 Document clustering with NMF

Ding C et. d in [8] shown that when Frobenius norm is used as a divergence and adding an orthogonality
constraint H" H =1, NMF is equivalent to arelaxed form of k-means clustering. Wei Xu et al. were the first
ones to use NMF for document clustering in [6] where unit euclidean distance constraint was added to column
vectorsin W. Yang et al. [7] extended this work by adding the sparsity constraints because sparseness is one of
the important characters of huge datain semantic space. In both of the work the clustering has been based on the
interpretation of the elements of the matrices.

"There is an analogy with the SVD in interpreting the meaning of the two non-negative matrices U and V.
Each element u;; of matrix U represents the degree to which term f; [0 W belongs to cluster j, while each
element v;; of matrix V indicates to which degree document i is associated with cluster j. If document i solely
belongs to cluster x, then v, will take on a large value while rest of the elements in i™ row vector of V will take
on a small value close to zero. "[6]

In the above statement, W~ UV

From the work of Kanjani K [9] it is seen that the accuracy of agorithm from Lee and Seung [2] is higher than

their derivatives [9.10]. In this work, the origina multiplicative update proposed by Lee and Seung in [2] is

undertaken.
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2. Methodology

The following section describes the proposed model in details. It includes the clustering method with the
proposed model and the parallel implementation strategy of k-means. The latter parts contain explanation brief
introduction to the underlying architecture of Hadoop Distributed File System (HDFS) used to run k-means
algorithm.

2.1 The Proposed Model

From hereafter called KNMF. In KNMF the document clustering is done on basis of the similarity between
the extracted features and the individua documents. Let extracted feature vectors be F={f; f, fz...fx}
computed by NMF. Let the documents in the term-document matrix be V ={d; ,d, ,ds ....d, }, then document di

is said to belong to cluster fx if, the angle between di and fx is minimum.

2.1.1 The methodology adapted
1. Congtruct the term-document matrix V from the files of a given folder using term frequency-inverse
document frequency
2. Normalize length of columns of V to unit Euclidean length.
3. Perform NMF based on Lee and Seung [2] on V and get W and H using (1)
4. Apply cosine similarity to measure distance between the documents di and extracted features/vectors of W.
Assign di to wx if the the angle between di and wy is smallest. Thisis equivaent to k-means algorithm with

asingleturn.

To run the paralel version of k-means agorithm, Hadoop is started in local reference mode and
pseudo-distributed mode and the k-means job is submitted to the JobClient. The time taken for steps from 1
though 3 and the total time taken were noted separately.

2.1.2 Steps in Indexing the documents in a folder
1. Determineif the document is new, update in index of not updated in index.
2. If it’s up to date then do nothing what follows. If the document is new, create a Lucene Document, if it's
not updated then delete the old document and create new L ucene Document.
3. Extract the words from the document.
4. Remove the stop-words.
5. Apply Stemming.
6. Store the created Lucene Document in index.

7. Remove stray files.

The Lucene Document contains three fields: path contents and modified which respectively stores the

full-path of the document, the terms and modified date (to seconds). The field path is used to uniquely identify
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documents in the index, the field modified is use to avoid re-indexing the documents again if it's not modified.
In the step 7) the documents which have been removed from the folder but with entriesin the index are removed
from index. This step has been followed to keep the optimal word dictionary size.

The default stop-words were added from the project of Key Phrase Extraction Algorithm [4] which defines
some 499 stop-words. The stop-words are read from text file and users can add words to the text file. After the

removal of stop words, the document was stemmed by the Porter agorithm [3].

2.2 Parallel implementation of k-means

The parallel implementation strategy of k-means algorithms in multi-core is described in [20] as:

"In k-means [9], it is clear that the operation of computing the Euclidean distance between the sample vectors
and the centroids can be parallelized by splitting the data into individual subgroups and clustering samples in
each subgroup separately (by the mapper). In recalculating new centroid vectors, we divide the sample vectors
into subgroups, compute the sum of vectors in each subgroup in parallel, and finally the reducer will add up the
partial sums and compute the new centroids. "

In the same paper it was noted that the performance of k-means agorithm with map-reduce increased in an
average 1.937 times than than its serial implementation without map-reduce. From as low as 1.888 times in
Synthetic Time Series (sample = 100001 and features = 10) to as high as 1.973 timesin KDD Cup 999 (sample
= 494021 and features = 41). It also adds that it was possible to achieve 54 times speedup on 64 cores.

Indeed, the performance upgrading with the increase of number of cores was amost linear. This paper was
the source for the foundation of Mahout projectl which include the implementation strategy of k-means
algorithm in map-reduce over the Hadoop. Implementation of k-means in MapReduce is aso presented in
lectures from [17]. Drost, | [16] describes k-means of Mahout project. In [18] Gillick et. Al studied the performance

of Hadoop'’ s implementation of MapReduce and has suggested performance enhancing guidance as well.

2.2.1 MapReduce in KNMF

In the method proposed in this work, since the fina clusters are the features extracted from the NMF
algorithms, the paraldlization strategy of map-reduce can be applied to compute the distance between the data
vectors and the feature vectors. Since it requires only one iteration, it can be considered as having only one
map-reduce operation. Furthermore, since the cluster centred computation isn’'t needed only one map operation
is enough? The map operation intakes the list of feature vectors and individua data vectors and outputs the
closest feature vector for the data vector.

For instance, we have list of data vectors V = {vy,Vv,,...vn} and list of feature vectors W= {w;,wp,ws}
computed by NMF. Then,

v, W> . map - <vj, We>

where wy isthe closest (cosine similarity) feature vector to data vector v;.
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2.3 Hadoop

Hadoop is a distributed file system written in Java with an additional implementation of Google's
MapReduce framework [19] that enables application based on map-reduce paradigm to run over the file system.
It provides high throughput access to data and is suited for working with large scale data (typical block sizeis
64 Mb)

2.3.1 Hadoop Distributed File System (HDFS)?

Itisits native file system that’s build to with stand fault and is designed to be deployed on low-cost hardware.
It's based on master/dave architecture. The master nodes are called namenodes. Every cluster has only one
namenode. It manages the filesystem namespace and access to files by client (opening, closing, renaming files).
It determines the files maping blocks to slaves or datanode. Usually there is one datanode per node. The task of
datanode is to manage the data stored in the node (each file is stored in one of more blocks). It’s responsible for
read/write requests from clients (creation, deletion, replication of blocks).

All HDFS communication protocols are layered on top of the TCP/IP protocol. Filesin HDFS are write-once
(read many) and have gtrictly one writer at any time. The blocks of afile are replicated for fault tolerance. The
block size and replication factor are configurable per file. Hadoop can be run in Local(stand-aone),

Pseudo-distributed mode or Fully-distributed mode.

2.3.2 MapReduce framework in Hadoop3
Theinput and output to the map-reduce application can be shown as follows:
(input) <k1,v1> _. map - <k2,v2> _, reduce <k3,v3> (output)

Theinput datais divided and processed in parallel across different machines/processes in map phase and the
reduce combines the data according the key to give final output. For this sort of task the framework should be
based on master/dave architecture. Since HDFS is itself based on master/save architecture, MapReduce
framework fitswell in Hadoop. Moreover usually the compute nodes and the storage nodes are the same, that is,
the Map/Reduce framework and the distributed filesystem are running on the same set of nodes. This
configuration alows the framework to effectively schedule tasks on the nodes where data is already present,
resulting in very high aggregate bandwidth across the cluster.

To implement MapReduce framework in Hadoop, there is a single master called JobTracker per job . Job is
the list of task submitted to the MapReduce framework in Hadoop. The master is responsible for schedulindg
the jobs' component tasks on the slaves, monitoring them and re-executing the failed tasks. There can be one

slave or tasktracker per cluster-node. The slaves execute the tasks as directed by the master.

3. Implementation
Since Hadoop, Lucene and Mahout are built with Java natively, it would be easy for the interoperability

between the components developed with Java. Considering this fact, Java was chosen as the programming

language for the implementation of our proposed model.
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Before the documents can be clustered, they need to be indexed. For the purpose of indexing, Lucene APIs
have been utilized. The documents are determined whether they are up-to-date in index. If it’s up to date then do
nothing what follows. If the document is new, a Lucene Document is created, if it's not updated then old
document are deleted and new Lucene Document is created. The stop-words are removed using key-words from
[4] and Potter Stemming. [3] is applied. Section 2.1.2 describes the Indexing in details.

Clustering has more complex steps than Indexing the documents. It involves creation of document-term

matrix followed by the application of KNMF. Section 2.1.1 describes the stepsin detail.

Figure 3.1: Clustering with our model 4. Experiments and
= e — =" Results
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across 20 different newsgroups

from Usenet. Each newsgroup is

stored in a subdirectory, with each

article stored as a separate file.
Some of the newsgroups are closely related with each other while some are highly unrelated. Below are the

topics of the newsgroups arranged by Jason Renn®

Table 4.1: List of Topics of 20 New Groups 4.2 Experiment

comp.graphics rec.autos sci.crypt For the purpose of experimenta
comp.os.ms-windows.misc | rec.motorcycles sci.electronics tion, clustering was done using up to
comp.sys.ibm.pc.hardware | rec.sport.baseball sci.med

comp.sys.mac.hardware rec.sport.hockey sci.space 10 group. 5 documents were taken
comp.windows.x randomly for two group each and
misc.forsae talk.politics.misc talk.religion.misc added to a folder. The folder was

talk.politics.guns at.atheism

indexed after removing the stop-
talk.politicsmideast | soc.religion.christian

words using KEA stop-words [4] and

applying Porter stemmingi3l. Then the clustering was done and results were noted. Next 5 documents were
taken out randomly from another group, added to the folder, indexed and clustering was done accordingly. In
this way atota of 10 groups with 50 documents were clustered. Clustering results were noted for three cases,

without using Hadoop, using Hadoop in local mode and finally using Hadoop in pseudo-distributed mode.

For KNMF the following parameters were used
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1. NMF: convergence parameter = 0.001 and maximum iteration = 10.

2. K-Means: k = number of news groups in folder, convergence parameter = 0.001, maximum iteration = 1,
distance measure = cosine

Since the length of W was not normalized as suggested by Xu et al. [6] there was no unique solution. For this
purpose the experiments the highest values of AC among the three cases as mentioned above was noted.

The performance of the clustering algorithm is evaluated by calculating the accuracy defined in [€] as follows:

Given a document di, let li and ai be the cluster label and the label provided by the document corpus,
respectively. The AC is defined asfollows:
25(61,. , map(li )) 6)

n

AC =

where n denotes the total number of documents, §(x, y) is the delta function that equals one if x =y and
equals zero otherwise, and map(l; ) is the mapping function that maps each cluster label |; to the equivaent label

from the document corpus.

4.3 Results
Table below shows the time taken by KNMF agorithm on the 20 Newsgroup collection on a Linux Ubuntu
8.04 laptop (1.66Ghz Intel Pentium Dua-core, 1G RAM) with and without MapReduce (Map = 2). The
numbers of clusters were denoted by k, AC denotes the accuracy measure. The without Hadoop and Local
Reference mode of Haoop shows time taken by KNMF as time by NMF/the total time taken. The
pseudo-distributed mode of Hadoop shows time for Map phases.
The chart below shows the time

Table 4.2: Results taken for performing only the cluster-

k | AC Without Local Reference | Pseudo- ing phase. Time taken for clustering
Hadoop mode of Hadoop Distributed phaseis cal culated from the above table
mode  of
Hadoop as (the total time taken - time by NMF).
2 1080 0.558/0.597 0.390/1.580 1/2 For the pseudo-distributed mode of
3 0.75 0.898/0.958 0.796/2.0 1/2 Hadoop, the time taken by map phaseis
4 | 066 1.090/1.159 1.074/2.307 202 considered time taken for clustering. It
5 0.60 1.961/2.111 2.155/3.457 2/2 '
6 | 056 4.086/5.295 4.122/5.617 11 can be seen that the time by the map
7 |0.68 6.340/7.158 6.262/7.653 2/1 phase of pseudo-distributed mode of
8 0.625 8.710/9.874 8.615/10.025 2/2 Hadoop is quite steady and rises only
9 0.533 12.435/14.088 12.503/14.027 3/3 )
10 | 0.60 26.963/30.615 | 26.700/30.648 33 when the number of clustersincrease to

8. The time taken by loca reference

and seria implementation or without using Hadoop exceeds time taken by pseudo-distributed mode of Hadoop

for cluster size equivaent to 10.
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Figure 4.1: Time taken by the clustering phase (k-means with 1 turn)

* 5. Conclusion

4 In this work, a new working
33 / model for document clustering
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1 sub-folders without having to
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0 document. This realy improves
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the performance of information
retrieval in any scenario. The accuracy of model was tested and found to be 80% for 2 clusters of documents
and 75% for 3 clusters and the results averages to 65% when for 2 through 10 clusters. NMF has shown to be a
good measure for clustering document and this work has also shown similar results when the extracted features
are used as the final cluster labels for k-means agorithm. To sca e the document clustering the proposed model
uses the map-reduce implementation of k-means from Apache Hadoop Project and it has shown to scale evenin
asingle cluster computer when clusters size exceeded 9 i.e. 40 documents averaging 1.5 kilobytes.
To enhance the scalability of our model, it is required to test the system by using fully-distributed mode of
Hadoop. Furthermore, we have tested the only the text and .doc format of files for indexing, our future works

will be concentrated to support the other formats of the documents.
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