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1 Introduction
In this paper we are concerned with the following boundary value problem

(1.1) ug + F(t,2,u, Du, D*u) = 0 in@=(0,T) xQ,

(1.2) B(z,Du) =0 in S =(0,T) x 01,

where €2 is a bounded domain in R™ and T > 0. Here u; = Ou/0t, and Du and D?u denote, respectively,

the gradient and Hessian of u. Let €2 be a bounded domain in R™ and 2 = ﬂ Q; where I is a finite
el

index set and Qs are domains in R" with relatively regular boundary such that 9Q; € C*. For x € 99
we denote by I(z) the set of those indices ¢ which satisfy x € 0€);. We deal with equations (1.1) in a
class of singular degenerate parabolic equations which includes the mean curvature flow equation. In the
case when F is continuous in its variables, there is already a comparison and existence result for viscosity
solutions of second order degenerate parabolic PDE with boundary condition (1.2). We refer for this to
[3]. In the case of singular PDE like the mean curvature flow equation and 92 is smooth, Giga and Sato
[4] have established comparison and existence results for viscosity solutions under the Neumann condition
and the author [8], Ishii-Sato [5] and Barles [1] treated the case of fully nonlinear boundary condition
including capillaly boundary condition.In [9] we have already proved comparison and existence theorems
under the Neumann boundary condition in the case 2 is piecewise smooth. Our aim in this paper is
to establish comparison and existence theorems concerning viscosity solutions of (1.1)-(1.2) when §2 is
piecewise smooth.

This paper is organized as follows. At first we constluct the key test function and prove our comparison
result and establish our existence result.

2 A comparison and existence theorem
We are concerned with the following boundary value problem

(2.1) uy + F(t, z,u, Du, D*u) = 0 in Q= (0,T) x Q,

(2.2) B(xz,Du) =0 in S=(0,T) x 09,

where € is a bounded domain in R” and T > 0. Here u; = Ju/dt, and Du and D?u denote,

respectively, the gradient and Hessian of u. Let 2 be a bounded domain in R™ and {2 = ﬂ Q; where I is
il
a finite index set and s are domains in R™ with relatively regular boundary such that 9Q; € C'. For
x € 082 we denote by I(x) the set of those indices ¢ which satisfy x € 0€;.
We start by listing our assumptions of F' and B. Henceforth, for p,q € R™ \ {0} we write p = %

and p(p,q) = [(Ip| Alg])'|p — ¢|] A 1. Here and henceforth we use the notation: a A b = min{a,b} and
aV b= max{a,b}.

(F1) Feo(0,T] x QxR x (R™\ {0}) x 8™),
where 8™ denotes the space of n X n real matrices equipped with the usual ordering.

(F2) There exists a constant v € R such that for each (t,2,p, X) € [0,7] x @ x (R™\ {0}) x 8" the
function u +— F(t,z,u,p, X) — yu is non-decreasing on R.
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(F3) For each R > 0 there exists a continuous function wg : [0,00) — [0, 00) satisfying wg(0) = 0 such
that if X,Y € 8™ and pq, p2 € [0, 00) satisfy

X 0 I -1 I 0
(0 Y)SMI(I I )+M2(O 1)7

F(taxauap7X) _F(t7y7u7Q7_Y)
> —wr(pi(jz =y + p(, @)?) + p2 + |p — al + |2 — yl(|p| V |g| + 1))

then

for all t € [0,7], x,y € Q, u € R, with |u| < R, and p,q € R"\ {0}.
(B1) Be C(R" x R")NCHL(R™ x (R™\ {0})).

(B2) For each € R" the function p — B(z,p) is positively homogeneous of degree one in p, i.e.,
B(xz, A\p) = AB(z,p) for all A > 0 and p € R™\ {0}.

(B3) There exists a positive constant 6 such that (v(z), D,B(z,p)) > 6 for all z € 002 and p € R™\ {0}.
Here v(z) denotes the unit outer normal vector of Q at z € 9.

(B4) For each i € I the boundary 9; is of class C1.

Theorem 2.1. (comparison principle) Suppose that (F1)-(F3) and (B1)-(B4) hold. Let u €
USC([0,T) x £2) and v € LSC([0,T') x 2) be, respectively, viscosity sub- and supersolutions of (1)—(2). If
u(0,2) < v(0,x) for x € Q, then u <wv on (0,T) x Q.

Theorem 2.2. (existence)Assume that (F'1)-(F3) and (B1)-(B4) hold. Then for each u(0,z) = g €
C(Q) there is a (unique) viscosity solution u € C([0,T) x Q) of (1)—(2) .

Let Qo = (0,T) x Q. A function u : Qo — R is called a viscosity subsolution of (1.1)-(1.2) if it satisfies
the following properties:

(i) u* < 400
(ii) T+ Fo(z,r,p, X) <0 for x € Q (r,p, X) € pé’ju*(t,x)
T+ Fo(x,r,p, X) Amin{B(x,p) :i € I(x)} <0

for x€0Q (r,p, X) € pé’:u*(t,x)

Similarly a function u : Qo — R is called a viscosity subsolution of (1.1)-(1.2) if it satisfies the following
properties:

(1) Uy > —00
(ii) T+ F* (z,r,p,X) >0 for ze€Q (T,p,X)Gpé’O_u*(t,x)
T+ F*(x,r,p, X) Amin{B(z,p) : i € I(x)} >0
for x € 0N (r,p, X) € pg;u*(t,x)

Here a A b = min(a,b), a Vb = max(a,b) and pQQ:'u* (t,x) (resp.pé’o_u*(t, x)) denotes the parabolic super

2-jet in Q. (see [2]) Any function u
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Remark 2.2.  Assumptions (F1) and (F3) imply that
—o0 < Fy(t,z,u,0,0) = F*(t,x,u,0,0) < co

Some typical examples of F' satisfying (F1)-(F3) are picked up.

Let A: Qx (R"\ {0}) — M™™ where M™*™ denotes the space of real n X m matrices, be a
continuous function which is homogeneous of degree zero, i.e.,

A(z,A\p) = A(x,p) for all (z,p,\) € 2 x (R™\ {0}) x (0,00)

and which satisfies

[A(z,p) = Ay, )|l < Callz =yl + |p — ql)
for all z,y € Qand p,q € S™ !, where C; > 0 is a constant and S™ ! denotes the unit sphere

{¢eR" : [ =1}
Let b € C(,R™) satisfy

|b(z) — b(y)| < Cylz —y| forall z,y € Q.
Furthermore let ¢, f € C(Q,R) be given. Define the function F' € C(Q x R x (R™\ {0}) x S\) by

F(z,u,p, X) = —tr[A(z, p) Az, p)" X] + (b(2), p) + c(x)u + f(z).

It is now easy to see that I satisfies condition (F3). Also, it is immediate to see that condition (F2)
is satisfied with v < mingec. To check (F4), we note that for any (¢, z,7,p,X) € [0, T] x 2 x R x (R™\
{0}) x S\,

|F(t, 2,7, p, X) — c(x)r = f(x)] < nCy| X[+ Cspl,
where Cs5 = max{|b(z)| : = € Q}, and find that F*(¢,z,7,0,0) = F.(t,z,7,0,0) = c(z)r + f(z) for all
(t,z) € [0, T] x Q. Thus F satisfies (F1)-(F4).
If A(z,p) =1 —|p|2(p®@p), b=0, and ¢ = f = 0, then it is the case of the mean curvature flow
equation and the above conditions on A, b, ¢, and f are valid.
Next we deal with the boundary condition. Consider the function B of the form

B(z,p) = (u(x),p) — |C()pl,

where p: R® — R™ is a Ob! vector field over R™ and C' : R — M™*™ is a C1'! function satisfying
det C(z) # 0 in a neighborhood of 9€2.

It is clear that (B2) is satisfied. We can modify the definition of B so that the resulting function B
satisfies (B1) and B(z,-) = B(x,-) for all z in a neighborhood of €.

As before let v(z) denote the unit outer normal of 2 at = € 9Q. By calculation, we have

C(x)*C(x)p
|C(2)p|

and we see that (B3) is equivalent to the condition

DpB(x,p) = p(x) — if p # 0,

(p(z),v(x)) > (£, C(x)v(x)) for all (z,£) € 9 x "L

A particular case is when = v and C(x) = a(x)I for some a € C11(R™) such that 0 < a(z) < 1 for
x € 0F), which corresponds to the capillary condition. In this case the boundary regularity of Q should
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be of class C*! in order that p = v € CL1(R") is satisfied, which is one of requirements of Theorems 2.1
and 3.1. It is interesting to find that the results in [6,7] need the same C??! regularity of the boundary.

Lemma 2.3. B
Assume (B1)—(B4). Then there are a positive constant o and a function v € C11(Q x R™) such that

for all (z,£) € O x R",
v(@, &) = |¢%,

v(x, \E) = No(x, €) for all A € [0,00),
B(z,Dev(z,£)) >0 ifz € 0Q and (v(z),&) > —ol€],
B(z, Dev(z,£)) <0 ifz € 9Q and (v(z), &) < o|¢].

We can choose a function v € C*°(Q) having the properties:
>0 on Q and (D,B(z,p), Dy(x)) > 1 for (z,p) € 90 x (R™\ {0}).
Let v and o be a function on Q x R™ and a positive constant, respectively, for which the conditions of

Lemma 2.3 hold. We set g = v? and choose a constant C; > 0 so that for a. e. (x,€) € Q x R,

9(2,€) V |Dyg(2,8)| < C11€]* and |Deg(w,€)|V | DyDegl, €)|| < Chl€°.

We fix a Lipschitz constant M > 1 of the function B on Q, and set ¢(x) = MC1¢)(x) for € Q. Then
we have

(DypB(x,p), Dp(x)) > MCy for (z,p) € 02 x (R"\ {0}).
We define

u(z,y) = e?@TeWg(z x —y)  for (z,y) € Q x Q.

Lemma 2.4. o
Assume that (B1)—(B4) hold. Then there are a function w € CH1(Q x Q) and positive constants C

and § such that for all (x,y) € Q x Q,
0 o —yl* <w(z,y) < Cle -yl
|Dyw(z,y)| V| Dyw(z,y)| < Clz —yf?,
(i)  B(xz,Dyw(x,y)) >0 if x € 08,
B(y,—Dyw(z,y)) <0 if y €09,
(i) [ Dawe,y) + Dyw(z,y)] < Clo -yl
p(Daw(z,y), —Dyw(x,y)) < Clz —y| if0<|z—y| <0,

and for a. e. (z,y) € Q x Q,

@) Dt <clo—ol (1 ) e-ut () 7))
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In what follows we use the notation: for any p,q € R",

p(p,q) if p,q#0,

r (p7Q):{1 if either p=0 or ¢=0.

Note that the function p* is upper semi-continuous on R"™ x R".

Sketch proof of Theorem 2.1.  We may assume that u and v are bounded on [0,7") x Q and that the
function r — F(t,z,r,p, X) is non-decreasing in R for each (¢,z,p, X) € [0,T] x Q x (R"\ {0}) x 8™
(see [5)) o

By virtue of lemma 2.3, there are a function w € C?(Q x Q) and a positive constant C' such that for
all (z,y) € Q x Q,

|Dyw(a,y)| vV [Dyw(z,y)| < Clz —yl,

(2.4)  (vi(x), Dyw(z,y)) >0 for all x € 09, i€ l(z)
vi(y), —Dyw(z,y)) <0 for all y € 09, i€ I(y)
(2.5)  [Dyw(z,y) + Dyw(z,y)| < Clz —yl*,
p*(me(Ivy)v 7Dyw(x7y)) < C|£L’ - y\,

and for a. e. (z,y) € Q2 x Q,

o) D) <clle-uk (L ) et (§9))

We argue by contradiction. So we suppose that

(2.7) mo = sup{u(t,z) —v(t,z) : (t,z) €[0,T) x Q} > 0.

For a >0, € >0, 6 > 0 we define

€
Ut a,y) = 57—y +aw(z,y) +6(p(z) + ¢(y)),
(I)(t,.’b, y) = U(t,.’ﬁ) - U(tvy) - \I/(t,fl,‘,y)
for (t,z,y) € [0,T) x Q x Q. Here the function ¢ € C%(Q) satisfies
©>0 on Q and (Dp(z),v(z))>1 for x€9Q and ic ()

Actually we can construct the above function ¢. (see [3]) From (2.7) we infer that for sufficiently small
e >0 and ¢ > 0, the function ® attains a maximum greater that mg/2. Fix such § and e, and choose a
maximum point (#,#,¢) of ®. Note that ® and (£, #,9) depend on «, &, 4.

Tt is now well-known (see, e.g., [2]) that

2.8 lim lim lim ®(,&,7) =
(2.8) lim Tim lim (2, &, 9) = mo,

(2.9) lim sup{ow(z,9) : 0<d<1, 0<e<1}=0. O

a—00
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Sketch proof of Theorem 2.2.

We use the Perron method (see [2]) to show the existence of a continuous viscosity solution of (2.1)—
(2.2). For this, the first step is to build sub- and supersolutions of (2.1)—(2.2) satisfying initial data.

Fix any 0 < € < 1 and choose a constant a(e) > 0 so that

l9(x) —g(y)| < e +ale)|lx—y[* forallz,yecq.

Let 8 be a positive function of € € (0, 1) to be fixed later, and we define functions VE on [0,T) x Q
parametrized by € € (0, 1), y € €, respectively, by

Vit zey) = g(y)+e+ale)w(z,y)+ B,
VZ(txiey) = gly) —e—ale)w(y,x) — Be)t.

We can see that for any y € Q,
Vo (t,z;e,y) < glx) < V*(t,x;e,y) forall z € Q.

We intend to select the function S8 so that V*t and V~ are viscosity super- and subsolutions of
(2.1)-(2.2), respectively. To do this, fix (t,2) € (0,7) x Q and let (a,p, X) € p%{V*’(t,x). where
a€R,pe R X € S™ (See [4] for the definition of parabolic semi-jets)

We first consider the case when z € 0f). We then observe for a closely related observation that
p = ale)Dyw(x,y) + rv(x) for some r > 0. Using (B3) we see that B(z,p) > 0. This shows that

B(z,p) V (a+ F*(t,z,VT(t,2;¢,y),p, X)) > 0.

We next consider the case when z € €. B
We can see that there exists constant C' > 0 such that

p|<C, X <ae)CI, V'(taxey) >gly) > -C.

Using (F2), with v = 0, the degenerate ellipticity of F™*, we find that

F*(t,z, VT (t,x;e,y),p, X) F*(t,z,—C,p,a(e)CI)

>
> F(t,e,~C.e,0) —wel(ale) + 1O+ 1).
We fix

Ble) = max_|F(t,z,C,e,0)| V|F(t,x,~C\e, 0l + wa((ale) +1)C + 1),
(t,x)eq

and observe that a = 8(¢) and hence
B(Jf,p) \ (a—|—F*(t,x,V+(t,x;€,y),p,X))
> a+ F(t,2,Vi(taey),p, X) > 0.
Consequently, with the above choice of function 3, for each (g,) € (0, 1) x © the function V*(-;¢,v)
is a viscosity supersolution of (2.1)—(2.2). Similar considerations to the above show that, with the above

choice of 3, for each (g,y) € (0, 1) x Q the function V= (+;¢,y) is a viscosity subsolution of (2.1)-(2.2).
Next, we define functions f* on [0,T) x Q by

fHt,z) = inf{V*t(t,az;e,y) : 0<e<1, yeQl},
f(tz) = sup{V (t,z;6,y) : 0<e<1, yecQ}.
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Then we easily deduce that f* are continuous on [0,7) x Q, f~(t,z) < g(z) < f*(t,z) for all

(t,x) € [0,T) x Q and f*(0,2) = g(z) for all x € Q and that f* and f~ are viscosity super- and
subsolutions of (2.1)—(2.2), respectively.
Now we conclude by the Perron method together with Theorem 2.1 that if we define the function u

on [0,T) x Q by
u(t,z) = sup{v(t,z) : v e S},

where S~ denotes the set of functions v on [0, T) x Q such that v is a viscosity subsolution of (2.1)(2.2)
and such that f~ < v < f¥ on [0,7) x Q, then u is a continuous function on Q x [0,7), which is a
consequence of Theorem 2.1, and a viscosity solution of (2.1)—(2.2). Noting that u satisfies u(z,0) = g,
we conclude the proof. O
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T ZA bV

Fully nonlinear oblique derivative problems for singular degenerate parabolic equations on nonsmooth domain

o EH)

In this paper I consider the fully nonlinear oblique boundary problems for singular degenerate parabolic
equations on nonsmooth domains. I define the weak solution for the fully nonlinear oblique boundary problem
on the nonsmooth domain using the classical viscosity solution. In this paper I can establish comparison

princeple and existence theorem for the above problems.
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