Numerical analysis for the boundary
value problem of the first order
ordinary deferential equation
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1 Introduction

In this paper we are concerned with the following boundary value problem
(1.1) || =1 on -1 <x<1,
(1.2) w(d1)=u(l)=0.

Here % denotes the derivative of x. It is known that the equation (1.1)-(1.2) does not have classical

solutions. The traditional mehod was to solve the following equation

(1.3) dl—1=¢%L  on —l<x<1,

(1.4) w(d 1) =u(l)=0,

To solve the euations (1.3)-(1.4) instesad of (1.1)-(1.2) was called vanishing viscosity method. We can find a

classical solution 1 of (1.3)-(1.4)

I—x +e(e"t—e"%), 0<x<I1
1
1+ x +e(e 2 —ez), —1=<x=0.

(1.5) ug(x):{

This paper is organized as follows. At first we give the definition of viscosity solution for (1.1)-(1.2). We also
prove the uniqueness and existence of the viscotisy solution for (1.1)-(1.2). The algorithm for deriving the

viscosity solution is proposed in sec.3.

2 uniqueness and existence results

We define the viscosity subsolution and supersolution of (1.1)-(1.2). In this paper we give a strong sense

definition of viscosity solution. In general we can relax the denitions of the viscosity solution (see[2],[4]).

Denition 2.1.

For alll] 1 < x < 1 we define the upper (resp.lower) derivative of ull C° (00 1,1)

D'u®={peRu@<u@+px—3+to(x—%) as x— %},

D u@X={peRu@=u@+tpx—X+o(x—%x) as x— X}.
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Numerical analysis for the boundary value problem of the first order ordinary deferential equation

Definition 2.2. A continuous function « : [[J 1,1] - R is called a viscosity subsolution of (1.1)-(1.2) if it

satisfies the following properties:

(1) u(@dD)=u(l)=0
(i) pI01<0 for  pOD"u (x), x0 (@ 1,1)

Similarly a continuos function « : [[J 1,1] - R is called a viscosity supersolution of (1.1)-(1.2) if it satisfies

the following properties:

(i) u@D=u(1)=0
(i) plI0120 for p0 DP u(x), x0(01,1)

If u is both viscosity subsolution and a viscosity supersolution, then u is called a viscosity solution.
Remark 2.3.
For u; in (1.5) we can easily see that lu, 00 (10 Ix[)l < Me where M is constant independent ofe . The

clasical solution u; of (1.3)-(1.4) uniformly converges to uy (x) = 100 Ixl.

Theorem 2.4. (uniqueness and existence) The function uy (x) = 10 Ixl is a unique viscosity solution of

(1.1)-(1.2).

Sketch proof of Theorem 2.4. By the definition 2.1 we can calculate

@2.1) D uy (x) =Dy (x) = 1 on 010 x0 0,
2.2) D uy (x) = D™ up (x) =01 1 on 00 x0 1,
(2.3) D uy (0) = {(pORIpl< 1},

(2.4) Dy (0)=@.

From (2.1)-(2.4) we can easily see ug is a viscosity solution of (1.1)-(1.2). Next we put

2.5) z?(x)={ 1c_ 'é'zf)x)%o)’

which C (# 1) is constant.
We see the function #(x) is not a viscosity solution of (1.1)-(1.2). Considering the results (2.1) and (2.2) uy is

a unique viscosity solution of (1.1)-(1.2).
Remark 2.5.

In the case that the equation H (Du) = 0 is convex in Du, the viscosity solution is unique (see [S]). Here Du

denotes the gradient of u.
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3 Proposing the algorithm

In this section, we consider the viscosity solution algorithm. The approach for solving the problem is
different from the convergence of the approximation by the vanishing viscosity method. We derive the viscosity
solution by constraining ill-posed acts of equational solution. In the constraining, two verications narrow down
the candidate of the solution; aspect of test-functions successively on every independent variable and satisfying

the boundary values.

3.1 Numerical analysis of the differential equation

The numerical analysis is approximate means allowed for a margin of error because digital computer can not
render infinitely-dividing. In the numerical analysis of the differential equation, the original equation u' (x) is
digitized by u' [x] showing point sequence. The approximate solution is derived by sequential computing to
population density of u' [x]. In consequence, the method needs boundary value and initial entry. As a result, the

approximate solution shows point sequence of u [x].

3.2 Derivative of discrete function

Our strategy of discrete derivative is to do subtraction between neighborhood point and remarkable point.
This follows the denition of the continuous function. In any function u [x], derivative u' [x] at any x = x,, (n =
0,1,2,...) is a gradient in a minute intervalA x = x,,.;[] x, as follows;

ulx,+1]1— ulx,]

3.1 u'lx,]= Ax

However, u' [x,] by (3.1) makes shift lengthA x/2 in x than continuous derivative u’ (x). To prevent the shift

length problem, we redefine the framework of the discrete derivative D; u [x,] as follows;

(3.2) D_vu[x,,]=”[x’;i]l:;’n[f:’*‘].

In this paper, we call D [x,] th¢ slope”. From here, the value of u' [x,] is described as the slope and
Dgu[x,] denotes as the gradient value.

Although the slope is rough rate-of-variability than the gradient, its precision betters with x — 0. Here, it is to

be noted that the slope is denable at a indifferentiable point in continuous functions. In Figure 1, we show

difference betweert slope” and’ gradient”.

3.3 Constraining to act of derivative
A part and parcel of the viscosity solution is maximum principle (or minimum principle). For deriving
derivative to indifferentiable function, viscosity solution make the transition to the test function by the
maximum principle.
On the basis of comprehension so far, from digitized equation, there are constraints to aspect of ill-posed
solutions.
e The two boundaries (x,, u[x,]) and (x;, u[x;]) are evident. Here, x; < x;.
e There are point(s) with different gradient on either side. The point(s) (xo, u[xo]) are indifferentiable in u(x).

e In the open interval [x;, x], the u [xy] is maximum of the u[x].
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Dgulx,] (left) .27 - -. Dgulx,] (right)
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Figure 1: The “slope” and the “gradient”.

When the initial condition of differential equation is given and the equation's (x, u[x]) points are successively
computed, the maximum of u[x] is unknown. If the u[x] is maximum at x = x; and u(x) is in differentiable at (xo,
u(xop)), let us consider relation between the u[x] and following 2 curves as the test functions.. One is g*[x], this is
always g*[x] > u[x]. Another is g" [x], this is always g" [x] < u[x]. Each of g* is a set with function, either g* [xo]
= u[xo] and another is approximate about u[x]. Here, g*[x] is supposition of the subordinate solutions and g [x]
is supposition of the dominated solutions.

We assume that acts of u[x] is constrained by fitting these curves. The N-dimension curves contain simple
parabola (N = 2), that are enough to constrain the u[x] without a hitch. If the one of parabola is Cj4[x], another is
0 g[x]+C,. Here, g[x] is turned on 2 end points of u[x]' domain and (xo, u[x0]). 2 constants are C; < 1 and C, =2
(u[xo]0 ulx,]) in general. Figure 2 shows the relation of u[x], g[x], one of g* and one of g" .

Our concrete strategy is as follows.

First, we aim at (x,, u[x,]). If (x,, u[x,]) indifferentiable in u(x), next point (X1, u[x,;+1]) is assumable and g*
[x] are found in (x,, u[x,]). In verifying a point (x,,u[x,]), some sets of such (x,u[x]) might be produced including
the possibility that g is considered at the following points.

Next, We apply rejecting-conditions to each (x,u[x]) candidate set. When g*[x] or g" [x] does not satisfy the
denition of the viscosity solution, such (x,u[x]) set is not a candidate. As further rejecting-conditions, we check a
possibility that u[x] arrives at (x;, u[x;]). In the verifying a (x,u[x]) set successively, if the set is not able to arrive

at (x;, ul[x;]), such (x, u[x]) set is not a candidate, too.

3.4 Algorithm
For a differential equation u'[x] = 0, there have to be a distance of theA x and 2 boundaries. One bound-ary
(x, u[x,]) is also the initial condition. Anothor boundary (x; u[x;]) is the end point of successive computing. Our

algorithm is as follows.
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Figure 2: The aspect of each test function.

Step 1 For x; = x+A x and x; = x; +A x, plot x; and x, under the condition of the Du[x,]. A point sequenceQ =
{ ey ulx]), (x1, ulxi]), (x2, ulx2])} is a candidate of the u[x]. However, there might be someQ s.

Step 2 Plot x; differ than stepl under the condition of the D,u[x] because u(x) might be indifferentiable at x;.
Such point sequence(s)Q , is a candidate of the u[x], too.

Step 3 For eachQ ,, make a parabola g[x] by using 3 points (x;, u[x,]), (x2, u[x2]) and the indifferentiable point of
u(x). If C,[x] or(] g[x] + C is not the test function under the denition of the viscosity solution, reject the
Q , from candidate.

Step 4 Check whether eachQ andQ , arrives at (xi, u[x]) by acs of u[x]. If anQ (Q ,) is not able to arrive at (x,u
[x1]), reject theQ (Q ,) from candidate.

Step 5 For each remainingQ) andQ ,, attend to (xa, u[x;]) and plot next (x3, u[x3]) as with Step 1 and Step 2.
Here, theQ s and theQ ,s are updating.

Step 6 Renew candidate of the u[x] as with Step 3 and Step 4.

Step 7 Repeat Step S[1 Step 6 from (x3, u[x3]) to (x;, u[x;]). Rate a remaindedQ (orQ ,) as the viscosity solution

of the equation.

Here, we solve a differential equation, using (1.1) as an example. The bounderies are ((J 1,0) and (1,0). The
initial condition is (00 1,0). For simplicity, we divide the domain into four A xs (i.e. the A x = 0.5). Each
sequence of pointQ , = { (x, ulx]), (x5, ulx;1), (x2, ulxz1), ....(x, ulx;)} (m=0, 1, 2...) is a derived candidate.

First, in Step 100 Step3, there are four combinations of x; and x; as follows (see Figure 3);

Qo= {(01,0), (00.5,0.5), 0.1)},
Q= {(01,0),(00.500.5), (0.0 1)},
Q.= {(01,0). (0 0.5,0.5), (0.0)},
Q5= {(01,0), (00.5,00.5), (0,0)}.
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Qo={(-1,0), (-0.5,0.5), (0, 1)}

Q,

{(-1, 0), (-0.5, 0.5), (0,0)}

(xsulxs]) (epulx])

v

X2

Q3={(-1, 0), (-0.5, -0.5), (0,0)}

Q1={(-1,0), (-0.5, -0.5), (0, -1)}

Figure 3: The initial condition of the equation (1.1).

Where,Q 300 Q , is not a candidate of solution because its test functions does not satisfy the viscosity solution
in [x, x2].Q »,00 Q , satisfies the requirement.Q ( andQ ;[0 Q are not indifferentiable yet.
Next, in Step 4,Q (,Q | andQ , are able to arrive at (x;, u[x;]) via (x3, u[x3]) = (0.5, 0.5) or (0.5,00 0.5).
Next, in Step 5, by (x3, u[x3]), eachQ , is updated as follows (see Figure 4);
Qo={(01,0),(00.5,0.5), (0, 1), (0.5, 1.5)},
Q,={(01,0),(00.5,00.5), (0,0 1), (0.5,0 1.5)},
Q,={(01,0),(00.5,0.5),(0,0), (0.5, 0.5)},
Q,={(01,0),(00.5,0.5),(0, 1), (0.5, 0.5)},
Qs={(01,0),(00.5,00.5), (0,0 1), (0.5,0 0.5)},
Qs={(01,0),(00.5,0.5), (0, 0), (0.5,00.5)},
Where, Q ,,Q 5 (at x;) andQ ¢ (at x3) are not candidate as withQ ;. Moreover,Q o andQ ; are not candidate
because these are not able to arrive the (x; u[x;]) by next act of u[x].
At last, onlyQ 4 = {(O 1, 0), (O 0.5, 0.5), (0, 1), (0.5, 0.5), (1, 0)} remains as the candidate of the viscosity

solution.

3.5 Considering

To be approximate well in u(x), the domain has to consist of manyA xs for u[x]. In our proposed algorithm, a
distance of the A x exerts an influence to arrive (x, u[x]) successfully. In sec. 3.4, u[x] arrived (x;, u[x/]) by
dividing a domain in fourA xs. If the domain consists of fiveA xs, u[x] is not able to arrive (x; u[x/]).

The algorithm does not expect appropriateA x's distance for striking (x;, u[x;]). Therefore, u[x;] should have
error margin. Additionally, verifying u[x] in inverse direction from (x; u[xj]) is desirable for satisfying the
boundaries condition. In th¢' bilateral verifying”, estimating the crossing point's value is indispensable because

each direction verifying has accumulative error (see Figure 5).
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Q,’ s actis only one.

(x5, ulxs]) (o, ulx1])

v

X3

Q¢ s act is only one.

£,

Figure 4: The candidates of the u[x] in x3.

(x0, u[x0]) is estimating.
)

Verifying from left. / vxerifying from right.

(x5, ulxs]) B «—

(g, ulxi])
Figure 5: The bilateral verifying.
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4 Conclusion

In this paper, for the boundary value problem of the first order ordinary deferential equation, we described
about the viscosity solution that is a solving method derives the unique solution. And we proposed the algorithm
for deriving the viscosity solution. The algorithm solved a typical first order ordinary deferential equation
successfully. In the future problem, we will develop the bilateral verifying, and extend the algorithm for second

order degenerate elliptic or parabolic equations.
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o =i

The visconsity solution was derived for a unique solution of the Hamilton-Jacobi equation by Crandall and
Lions. However, the numerical analysis method for the visconsity solution is unestablished.

We consider the boundary problem for the first order ordinary differential equation. In this paper we prove
the existence of a unique viscosity solution.

Our algorithm solve a typical first order ordinary deferential equation successfully.
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