Attempt to Construct an Alternative Formation
Theory of Beat Applied to the Pendelloesung
Beat and Proposal of its Confirmatory
Experiments at Low Temperatures

Tetsuo. Nakajima

® Abstract

An alternative theory of beat, in which a variation of the intensity of a composite wave is formed from
definite distinct waves of which more than two have different frequencies is constructed. It is applied to
Pendelloesung beat (hereafter, abbreviated as PB) as an apt example. PB has been observed only in some light
elements (below the atomic number 32) by using rather hard X-rays up to 60keV above the room temperatures.
These observations for the formation of PB support the view that the recoil energy loss plays the essentially
important role in beat production by the superposition of the photons with the reduction of the momentum. The
Bragg law for the reduction of the momentum by the recoil is derived based upon the corpuscular character of
the light and the principle of the equipartition of the recoil energy over all the atoms in the crystal. The
application of the Bragg law, to the superposition of the expected value of the even or odd time multi-reflex
photons (taken by the binomial distribution as stochastic events) forms the two types of the transmitted or
diffracted PB, respectively. The law predicts two types of the prominently positive projecting peaks at half wave
at even times of 7 and the plus or minus projecting peaks at odd times of 77 , according to the multiplicity factor
of the reflection, exist as pulsations of bare PB from AM by cosec Awt? in the basic bare envelope curve. It turns
out that the AM effect of the binomial distribution on bare PB makes all of the peaks contracted as if it is erased,
and makes the intense collimated photon flux follow as the Borrmann effect. It is proposed this review can be
confirmed experimentally by testing the prediction that the integrated reflection intensity of PB fades into
quantum PB as a limit near 0K by a reduction of the recoil reflections due to the enhancement of the crystal

rigidity with decreasing temperature.
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l. Introduction

In this work, an alternative theory of the beat, in which a variation of the intensity of a composite wave is
formed from the superposition of the definite distinct waves of which more than two have slightly different
frequencies, is constructed based on using a modified Bragg law and the principle of the equipartition of the
recoil energy. It is applied to PB as an archetypal example.

Since the observation of the equal thickness interference fringe in Si, LiF and quartz!, PB has been observed
in many types of the crystals as listed in Table I. These results are generally characterized by the following
conditions: firstly, the crystals exhibiting PB are distributed across the light elements and for less than one third
of all the elements in the periodic table from carbon with Z=6 to Germanium with Z=32 in Table I. See also
Fig.1, in which PB is shown to be observed at most within a parallelogram abcd. Secondly, all of the examples
of PB have been observed above the room temperature and up to near the Debye temperature @ p.'® This means

that PB has appeared only in the low Z nonrigid crystals that favor recoil reflection. As is well known, the

)17—19 t,20

discovery of the Moessbauer effect (ME revealed a temperature effec showing that at lower
temperatures, the crystal becomes more rigid as confirmed through the microscopic phenomenon of ME. As a
result, the effective resonance absorption cross section increases abruptly below about 150K as shown in Fig
2.17%-20 Thirdly, the available X-ray energy E, ranges from 10keV to 60keV (see in Fig. 1), which greatly
outweighs high values of E¢ in the exponent defined by
2M=(Esin Op/Ec)* @ (1) (1)

in the Debye-Waller (D-W) factor of D=exp(-2M) (Table I).>! Here, ® ()=1+41 J.Ow ydy/(e’-1)where =T/© p and
T is the absolute temperature. Finally, in these cases, the Bragg angle of 5 becomes small but the high recoil
energy Er of a single atom by absorption or emission in the reflection of the photon is lost, independent of 5,
which distributes up to the high value of 161meV from 0.74meV at most (Fig. 1). From these observations,
preferred path for the formation of PB is from the recoil X-ray reflection.

From the old quantum theory, new types of the beats are deduced from the superposition of the multiple
transmitted and diffracted X-ray photons based upon the supporting experimental factor, without employing the
commonly used dynamical theory of X-ray diffraction (DTXD). The contraction of the momentum due to the
recoil energy loss in X-ray reflections could make a novel offer to form PB, which varies in the intensity of
composite waves as the beats formed from the superposition of the multiple distinct waves with successively
slightly different frequencies. Experiments to confirm these reductions that are closely related to the role of the
recoil reflection as an origin of PB are proposed. These experiments would search for a reverse of the

temperature effect in ME?® that the integrated intensity of PB due to the recoil reflection fades into quantum PB

as a limit at OK by the enhancement of the crystal rigidity with the decreasing temperatures.

Il. On the compensation of the recoil energy by the partial charge of all
atoms in the crystal based on the principle of the equipartition of it
It has been shown that ME with extremely high energy resolution of A E/Eq = 3.59-107'° for 'Ir'""1° and 4.67

10" for "“Fe?? can be achieved by the turntable effect due to the Doppler effect® in the resonance absorption
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and emission of y-rays of the nuclei bound in the crystal. This effect outweighs the recoil energy Ex (keV) per a
single radioactive atom defined by (Appendix (App) I and Fig. 1),

Er = (172m) - (Ey/c)?, 2
where c is the velocity of light. There exists an energy deficit of 2Ex between the absorption and emission of
y-ray in ME. If all of constituent atoms are held in the lattice by tightly binding forces, the single free atomic
mass m in eq. (2) should be replaced with Nm for the whole lattice, based upon the principle of the equipartition
of the recoil energy loss due to the crystal rigidity (App I). Since N might be typically estimated to range from

10 to 10% atoms, Eg in eq. (2) is reduced by a factor of 107'° to 10, with the important result that

approximately, Ex /Ey = 0, as follows?>2*
E? EX(keV)?
Ep(heV) =20~ 537,10 ~10-%). Lo ReV)"_ 3)
2Nmc M (kg / mol)

where m is equal to the quotient of the atomic weight M, divided by the Avogadro's number N,. The value of
M, approximately ranges from 10~ to 10-'kg/mol.

As is well known in terms of cold shortness or brittleness, the rigidity of the crystal is enhanced at low
temperatures and therefore, the absorption cross section of '°'Ir in Fig. 2 steeply increases below about 150K in
ME.!7-20 It is therefore understood that the temperature change of the elastic constants could be determined from
the microscopic phenomena of ME. The temperature effect’® has been introduced as the D-W factor based on
the Debye heat capacity formula by many contributors.??

The number of N in eq. (3) accidentally comes from the sample size. Unlike ME, the appropriate reduction of
the momentum due to the recoil X-ray reflections is very important for the formation of PB with a definite
wavelength. Therefore, one of the likely explanations is that the number of the atoms assessed by way of
compensation for the recoil energy loss strongly depends on the temperature change of the crystal rigidity

defined by A (T)=Npcrra(T) (eq. (I-9) in App I) which is called as the partial charge rate of the recoil

accommodation (PCRRA). Using this definition, eq. (3) is rewritten as follows (App I):

AT E

E2 2
Ep(keV)=2"2.20 537,107 o (keV’)
2m

N perpa(T)M , (kg I mol) ,

2
. “
in which A (T) ranges from zero for the rigid crystal at T=0 to one for the free atom at the melting point, i.e., 0 <
A(T) <1 (% > Npcggpa(T) > 1). It naturally follows that A(7T) might be deduced from the close theoretical
relation of D-W factor. Although, in order to examine the characterization of PB, PCRRA as an unknown
quantity should be theoretically derived from the first principles calculation, it is not purpose of this paper.
PCRRA is treated here as a monotonic temperature dependent parameter without loss of generality. Therefore,
eq. (4) based upon the above idea could be applied to not only the recoil-free nuclear y-ray spectroscopy but
also to recoil X-ray reflection over the energy region of 10 to 100keV. Here, it is assumed that the recoil
velocity of the atom is sufficiently small so that it can be treated non-relativistically.

The accurately measured values of the dimension or mass of the crystal are indispensable for the
determination of the atomic number of N in Eg. Hitherto, they have not been needed in the analysis of the

experimental results of PB and ME. As a consequence, they have not been precisely recorded in almost all
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reports. One of the experiments which is suitable for the present proposition is our observation of a new type of
PB near Ga K edge of GaAs(200).!""!* Some measured and calculated parameters are shown in Table IL. In our
experiment,!'"! the flux of n=1.09-10° (photons / s 0.1% band width) in X-rays of nhv, was used at BL-6C, in
the Photon Factory of KEK.?

lll. The Bragg Law from the Accumulated Contraction of the Recoil
Momentum of the Multi-reflex Photons based upon the Corpuscular
Character of Light

An infinite crystal with discrete planes spaced with djy along the z-axis is considered in Fig. 3. According to
quantization by the old quantum theory, allowed motion of the crystal described by the momentum p, along
z-axis, which is constant in the absence of external forces working on the crystal, i.e., dp,/dt = 0, is given by

§ p.dz=p. J.Odhkl dz =p. dy, =nh, (5)
where n is the quantum number relevant to the periodicity of djy and /i the Planck constant. Considering that h=
W2 and k and k, are the wave vector of the incident and reflected photons defined by k =ky=2 7 / A ¢, and
parallel to the recoil velocity of v and v, defined by v=v, in eq. (I-8), respectively (Fig. 3), the z-component of
the linear momentum p, of the photon and crystal at the r-th time reflection in eq. (5) is given by
p.=nhld,, ={(h/L,)- 2(r - DAT)mv}sin 0, +{(h/A,) - 2rA(T)mv}sin0,,  (6a)
where r=1,2,---,1. Here, it should be noted that the Bragg law in eq. (6a) could not be derived as a natural result
from A (T)=1 at =1 in the case of the free atom. By using the representation of the vector sum, the new Bragg
law of eq. (6a) in Fig. 3 can be expressed by,

pH{ Hke-2(r-1D) A(Dym vy }={ fik -2r A(T)m v },
where p is the scattering vector. The scattering vector p is given by

p=-{ i ke-2(r-) A(Dym vy }+{ ik -2r A(T)m v }. (6b)
Eq. (6a) is exactly identical with eq. (6b) and since p is a reciprocal vector, so is -p.>°

Paraphrasing eq. (6a) from the scheme of the Thomson scattering, *' it follows that the first term of the
incident photon with the momentum of A/ A o-2(r-1) A (T)mv before absorption by an electron tightly bound to
the atom in the crystal becomes i/ A o-(2r-1) A (T)mv as an excited state subjoined by - A (T)mv after absorption
and it finally changes into A/ A ¢-2r A (T)mv similarly subjoined again by - A (T)mv after emission. Similar to
ME, there is a pair deficit of the recoil momentum of 2 A (T)mv by the crystal in egs. (6a) and (6b) due to the
absorption and emission in every reflection under the Bragg condition.

The momentum of the photon in the transmission via the absorption and emission under the non-Bragg
condition of # z=0 in Fig 4 does not change without dissipation from D=1 in eq. (1). It is clear from the fact that
maximum intensity of the forward scattering can be obtained from the maximum atomic form factor
proportional to Z at the zero scattering angle. Moreover, since the recoil velocities of vy and v are parallel at the
zero scattering angle and reverse sign each other in Fig 3, both recoil momentums offset instantaneously each
other, i.e., vp-v=0, because of zero intermediate state in the Thomson scattering.31 This means that the

transmission is the elastic scattering.
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By using eq. (I-8) in App I, a new Bragg law from eqs. (6a) and (6b) is expressed as:
ni,
1- 2rA(T)(1- 1/2r

2d,, sin0, = ):n;LO {1+2rA(T) }, (7)

since r>>1 and 2r A (T)<<1 from Table III. By an approximation of 2r A (T) = 0 as the recoil-free reflection, the
approximate Bragg law from eq. (7) is given by
2dsinfg=n .
It is important to stress that two types of PB from the transmitted and diffracted photons in Fig. 4 were derived
on the basis of the new Bragg law in consideration of the multiple recoil reflections in eq. (7).
The term of 2r A(T) in eq. (7) represents the relative change of the wavelength due to the momentum
reduction by the r-time recoil reflections. After maximum reflections of /, the relative change of the wavelength

is finally given by

Ao Jp Ao ), Wy ). N
where the multiplicity factor of the reflection for GaAs is given by (Fig. 3 and Table III)
104
I=|—5 |+1- 2 190 +1 =155933, ©)
d yp cOLO,, 0.282-10" - cot12.4°

where [] is the Gauss' notation. The subscripts R and r in eq. (8) indicate the total and one time recoil reflection,
respectively. It simply means that the frequency of X-rays changes by A «wdue to the recoil at every reflection,
for example, as sinw of to sin («wp+ Aw )t as shown in eq. (6a).

By using the bare beat formation formula of eq. (II-1) in App II, the variation in the intensity of a composite
wave at the same spatial point at an instantaneous time, which is traditionally formed from two distinct waves

with different frequenciesw | =wo andw: =wo + A w with the same amplitude A, could be expressed by
2 '
¢(1)= AZSlnwit =4 sin(w, + rAw)t
i=l r=0

_ Asin(w, + Aw /2)tsin Aot
sin Awt /2

If the sum of frequency as the average of (w + w2)/2(=wo + A w/2) was too high to be observed, eq. (10)

= 2A4sin(w, + Aw/2)tcosAwt/2.  (10)

would reduce to i/ () = 2A" cos [(w1-w2)t/2]= 2A" cos A wt/2, which is expressed by only the beat frequency
as the beat pulsation.
Based upon the two wave approximation of DTXD, the long period of 7 in eq. (10) is expressed by
T=2n/[(w, - ©,)/2]= 2/, - v))=2 A, [ e(A, - 4,) =4, [c, (11)
where the wavelength of the beat A, is equal to twice the extinction distance #5.>* Eq. (11) is equivalent to ¢t = 21
from the Kato-Lang's relation.! Therefore, by replacing 1; = A, and A, - 1> with 1o and A 1, respectively, the
relative change of the wavelength in eq. (11) from DTXD is represented by
AL/A0) e =220 /2, (12)

which should be equivalent to eq. (8), because both equations result from calalations based on understanding PB

DTXD

from different physical viewpoints.
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By using the values of / and N for GaAs in Tables II and III, eq. (8) becomes
ALY _,; 8300K) _2x155933-6 (300K)

Ao N 8.91-10*

R

=3.50-10""°6(300K). (13)

On the other hand, by using the values of 4, in Table II and A, for 7 -polarization of GaAs* in Table I1I, eq. (12)
could be estimated to be
AL _2_2><0.1207-10'9
%o oy Ay 110.08:10°°
The values of ¢ (300K) and A (300K) can then be obtained from the equivalence of egs. (13) and (14) as in Table
III. The reciprocal of A (300K) gives Npcrra(300K) =1.42 + 10" in eq. (4) which is the effective number of the

~2.19X10°°. (14)

atoms in the crystal compensating the recoil energy as PCRRA and § "'(300K) = 1.60 - 107! represents a ratio
of Npcrra(300K)/N. A value of the wavelength difference of A A from eq. (14) is estimated to be 0.264fm. By
using M, = 0.069723kg/mol for Ga, the recoil energy loss 2E per Ga atom by a single photon for formation of
PB in eq. (4) is estimated to be

5.37-107"X10.268> (keV' )
1.42+10" X 0.069732(kg / mol)

These physical quantities related with PB of GaAs near Ga K edge in Table III are commonly too

2E, (keV) = =11.41-10"% (keV).

infinitesimal to be detected directly by means of the active detectors, because their detection ability is clearly
outside the range of their sensitivity. They could be barely obtained from PB through the interference of the

multiple photons.

IV. Formation of PB and its Characterization
IVA. The Effect of the binomial distribution on the quasi-collimation of the definite
translational state photons.

Fig. 4 schematically shows the formation of the diffracted and transmitted photons. All of the diffracted
components of a photon are reflected by odd multiples and their wave vectors make the angle of 2 fp with the
incident photon. The transmitted components of a photon are reflected by even multiples and are parallel to the
incident photon. Generally there are two ways in Figs 5(a) and 5(b) to count the numbers of the photon paths
from combinations of the diffraction (d) and transmission (#) as stochastic events by the binomial distribution
(BD) in Fig. 4.

Fig 5(a) shows one way to count the photon paths by d and ¢ in Fig 4, which are designated as G-wave (G)
and O-wave (O) in the two wave approximation in DTXD, respectively. In Fig 5(a), when an incident photon is
injected to the net plane d from the upper left or right of the test crystal under the Bragg condition setting, it
splits into G and O in each case. The former makes an angle of 2 5 with the incident photon and the latter
parallel to it. In this scheme, the alternatives are G and O as described by G=0 =1/2 (G+0O=1) and then all of
paths in the multiplicity [ could be given by BD of B(G, )=(G+0)'=1. However, the path in Fig 5(a)
discriminates against only the direction between G and O by arrows determined from the incident photon,

without discrimination between the Bragg reflection and transmission. As a result, the number of the diffraction
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in Fig 4 can not be determined by the path of Fig 5(a) and it is impossible to classify the emitted photons into
two groups of the transmitted and diffracted photons as shown.

In other path in Fig 5(b), it is not important whether the angle between the incident and reflected photons
correlates as in the former case but whether the photon diffracts (d) or advances (7) in a beeline at each reflection
point. In this case, the number of the diffraction is countable from number of flexion (d) and beeline (7) in each
path in Fig 5(b), for example, one diffraction from d - ¢ of the diffraction-transmission or d * ¢ of the
transmission-diffraction and double diffraction from the diffraction-diffraction of d + d and no diffraction from
the transmission-transmission of ¢ + ¢ in the case of /=2. Similarly the alternatives are Bragg reflection (d) and
transmission (7) of fifty-fifty in spite of two kinds of the incident photon and there is a sharp distinction between
them. In the section IVC, the construction of the intrinsic beat functions modulated by BD from the bare beat
formation formulas in eqs. (II-1) and (II-2) in App II using the way of Fig 5(b) will be shown. It is important
that one-to-one correspondence between the two ways of Figs 5(a) and 5(b) to count the optical paths in Fig 4 is
clearly satisfied from B(G, )=B(d, [)=1.

On the assumption that the statistical probability of d and ¢ is d=¢=1/2 under d+t=1, the numbers of the photon

paths from the combination of d and 7 by BD in Fig 5(b) could be counted by
i i
BlLd=d+1) =Y ,Cd""t =(12)Y ,C =1. (15)
r=0 r=0

Using three-dimensionally arrayed net planes (hkl) as reflectors in a crystal constructed by atoms with the
definite interval by djy in the directions of [hkl], after an incident single photon is reflected in even and odd
times, its components are emitted as the transmitted and diffracted photons of / modes in each in case of
multiplicity factor / in Fig. 4, respectively. Both of the diffracted and transmitted photons produce PB by the
principle of the superposition of both components, which are the definite translational states with information
about the location and momentums.**

According to Dirac,* the photon is described as going partly into each of the two components into which the
incident beam is split. The photon is then in a translational state given by the superposition of the two
translational states associated with the two components. For a photon to be in a definite translational state it
need not be associated with one single beam of X-ray, but may be associated with two or more beams of X-ray
which are the components into which one original beam has been split. In the accurate mathematical theory,
each translational state is associated with one of the wave function of ordinary wave optics which describe
either a single beam or two or more beams into which one original beam has been split. Translational states are
thus superposable in a similar way to wave functions.

The midline in the Pascal's triangle (PT) of the binomial coefficients in eq. (15) (Table IV), which
geometrically depict the Borrmann fan in Fig. 4 is an axis of bilateral symmetry from the relation ,C, = ,C;,. PT
in eq. (15) is constructed from the Pascal's formula of ,C, = 1C,.; + 11C,. By using the formulas and the
Stirling's approximation of I! =2 it [(I/e)!, the peak values of the probability functions in BD in the pair of the

odd and even integers (21, +1, 21, +2) of [, are mutually identical and shown in Table IV as
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+ + 1
B(2l, + 2,d)|r:[h+1 =(1/2)2[h 2'21h+2 Cl,,+l = (I/z)yh 1'21h+1 Clhﬂ =B(2I, + lad)|,. =

=1, +1 :T‘
nlh

This is estimated to be 2.02 + 10(>>1/1;) per one photon for [=21,+1=155,933 of GaAs in Table III. In the case
of the photon flux n = 1.09 + 10° (photons/s 0.1% band width) in KEK?, the peak intensity is given by the rate
2.20 * 10° (photons-0.1% band width). It is understood from the fact that the shape of B(l,d) for large I is
approximated as the normal distribution, B (e, d) that closely resembles a hanging bell with the inflection.
Similarly, the values of the probability functions for @' and d"'t along the midline and # and df"' along the

right and left sides of the Borrmann fan for GaAs are given by

B(l.d) r:00r1:(1/2)1'l G, = (1/2)1'/ ¢ = 1/21 = 1/2155’933 =0,
for d' and #, and
/DB, =01/2)A/]),C, =(1/2) =1/2" =0,

for df! and d"'t, which are only one among / terms of the [ degree of ¢+t +d+--tt and d-d- -t ++d-d,
respectively (See Fig 4 in the case of [ =5). These are used for the steep contraction of the projecting peaks
stated later in the section IVC.

It follows that, although the incident photon seems to apparently diverge with an angle of 2 § 5 at the pivot of
the fan in Fig 4, the reflected photons of the higher order of » in the approximated product near (df)" (r =~ n/2)
are highly probable given by the large binomial coefficients in the vicinity of the midline in PT as if the photons
are apparently collimated. It turns out that the multi-reflex photons can be considered to be quasi-collimated to
68.3% within = 198 (=/Idf) modes as the standard deviation from the normal distribution approximated from eq.
(15). Experimentally, when the crystal is set at the Bragg law, so that the transmitted and diffracted photons
exist, the point of emergence can be determined by taking several film recordings at different distances from the
crystal. In doing this, it is found that the point of emergence for the transmitted and diffracted photons is
directly opposite the entrance point, suggesting that the effective combination of the two beams has traveled
through the crystal parallel to the diffracting planes. This has been called as the Borrmann effect.>” The

Borrmann effect can therefore be understood as the quasi-collimation from AM effect of BD.

IVB. The formation of bare PB due to the transmitted and diffracted
photons more than two by multiple reflections
Taking account of the probability distribution of BD in eq. (15) as a statistical weight of the reflected photons
by the three-dimensionally arrayed reflectors, the intrinsic PB can be detemined from the superposition of the
expected values of the even and odd time multi-reflex photons. From the addition and subtraction between
weighted forms of eqs. (II-1) and (II-2) in App II with BD, it is deduced that

A
Y irans (t) - E {(thns + Wdlff) + ( Y irans ~ Wdlﬁ)}
diff’

A)(1Y&L(1). 1) ¢ 1.
ZE (5];—; . s1n(a>0+rAa))t:l:(§)ng(- " . sin(w, +rAw)t ¢, (16)

where the subscripts of trans and diff are abbreviated from transmission and diffraction, the double subscripts
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trans . . ) . .
of match with= iny and is equivalent to ,C,.
i 7

In order to characterize the nature of two types of PB by WZ;;{S , it is important to characterize the bare beats

of i+ (f) without BD. The bare beat of i/ () due to the transmitted photons given by the sum of eqs. (II-2) and
(II-1) is represented by

+ +
y sin[wo +éAw ]t . sin12—lAwt sin[wot + é(Awt +7r):|- sianl(Awt +7)
l//+(t) :3 +

. Aot Awt
Sin T COS——

Asin[o, + (I - )Aw/2]t-sin (I +1)Awt/2

[:odd 17)
_ sin Awt
Asin(o, +IAw/2)t-sin (I +2)Awt /2
: [:even. 18)
sin Awt

Similarly, /- () from the subtraction between them is given by

sin|:o)0 + ;Aw:|t- sinl%lAcot sin[coot + é (Awt +7‘C):|- sin I%I(Acot +7)

t = —
w075 Aot Awt
sin BN cos——

Asin[w, + (I +1)Aw/2]t-sin (I +1)Awt /2

[:odd 19)
_ sin Awt
Asin(w, +IAw/2)t-sinlAwt/2
. [:even, (20)
sin Awt

All of the coefficients of Aw ¢ in the second sine function in the numerators of eqgs. (17), (18), (19) and (20)
are even integer. By replacing / by odd integer 2/,+1 or by even one 2/, these equations can be simplified. It
should be noted that these four equations with large [ are identical with the basic generating function of the bare
beat formation formula in eq. (II-1) in App IL

In case of GaAs (200) with odd integer of [=2/,+1=155,933 in eq. (9) (Table III), egs. (17) and (19) can be

simply rewritten in the general forms as follows:

Asin(w, +1,Aw)tsin(/, +1)Awt

: transmission(+)
Wi:21h+1 (l‘)= ' sinAwt ‘ (21a)
A sm[coo +(, + DAw]t sin(/, + Aot . _
- diffraction(—)
sin Awt
In the case of even integer of /=2, eqgs. (18) and (20) can be rewritten as follows:

Asin(w, +1 héa))t sin(/, +1)Awt transmission(+)
=2 (l‘) _ . sin Aw{ (21b)

Asin(w, +1,Aw)tsinl, Awt ‘ ,

- diffraction(—)
sin Awt

It should be noted here that i =2"(f) is expressed in term of sin [,Aw¢? in the second sine function in the

numerator, which differ from others because of difference in value between even integers /=2/, and odd integers
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=20,+1.

Since w is much higher than J, Aw and (/,+ 1) Aw in Tables II and III and the sum frequency is too high to
be observed, by using eq. (III-6) in App III and replacing A sin (w o+ L Aw)t and A sin [wo+ ([ + 1) Aw ]t with
A', a set of eq. (21a) and (// =2h(¢), and independently W= (f) in eq. (21b) reduce to the direct product of the

regular form as
Ly

” i=21h+] (f) l =21, (f) 2/h A'HSln Awt + rn/(l + 1)) (22a)
and o B
w22 (t)s 2’h71A'lh_Isin(Acot+V7t/lh), (22b)

=1
where the beat frequencies of I, Aw and (/, — 1) Aw appear in egs. (22a) and (22b), respectively.

The probability density at r in (15) is positive definite as 0<(1/2)" ;C,<1. As a result, the absolute values of the

cross products in eq. (16) between i/ () and B([,d) shrink systematically and inhomogeneously and they satisfy

' . VAN
)rz&[( ]sm(w +rAw)t£(-1) (}Jsm(w +rAa))t:|

!

[

( } sm(a)0 +rAmw)t + (1) sin(w, +rAw)t
r:O

the inequality

| Y trans (t)| g(

diff

5 2 [sin(w, +rA®) (- 1) sin(w, + rAw)]

For brevity, Figs. 6(a) [,=1, (b) [,=2, (c) [,=3, (d) =4, (e) =19, (f) 1,=20, (g) ;=29 and (h) [,=30 show the

= |1//i (z)| < |cos ecAwt| . (23)

modulated cosine curves for the small odd and even integers of /, instead of [,=77966 in eq. (22a). Here it
should be noted that the behavior of all curves in Fig 6 as well as Fig 7 is graphed by eqs. (22a) and (22b). All
of the curves have the alternating and non-alternating projecting peaks at every n -radian depending on the even
and odd integers of [, in egs. (22a) and (22b), respectively. The height of all peaks in egs. (22a) and (22b) by

using eq. (III-6) are characterized as

. . I,
. sm(l.h +DAot _ Lim sm(l.h +D(mre+6) | H( 1)" sin
Boimmr gin Awt 50 s1n(m T+) g Iy +
.y , 1 (/, :even)
=(-1)" (l )= (24a)
(l +1) (I,,m:odd)

and
sin/, Awt sin/, (mm + 9§ P .
Lim +=Lim.h(—) =l 11_[(- )" sin— rx
Aotomz sin Awt 920 sin(mm ) pi [,

=", = {Z" (1, < odd)

(24b)
=1, (I, :even,m:odd).

All of the curves in Fig. 6 show the behavior of sin(l,+ 1) Aw t cosec Aw t due to AM and FM that is observed
only in the half wave of the projecting peaks (Fig. 7).

In order to investigate AM and FM effects by cosec Awt in egs. (22a) and (22b) in detail, the modulated

16 | AALEZFE KR



Attempt to Construct an Alternative Formation Theory of Beat Applied to the Pendelloesung Beat and Proposal of its Confirmatory Experiments at Low Temperatures

cosine curves of sin(/,+ 1) Awt cosec Awt together with the non-modulated curves of sin(/,+ 1) Aw for case
of ;=9 and 10, respectively, are shown in Figs. 7(a) and (b). For example, in Fig. 7(a) over an angular ranges
of | Awt| <18, 162° < Awt<198°and 342° < Aw<378°, the projecting peak of /,+1=10 in the height of
the half-wave due to AM are seen, together with FM of the half frequency of (1/2) Aw as understood from the
anti-phase region between two peaks at 180° and 360°. FM could not be seen in range of 18° < Awt<162°and
198° < Awt<342°, but AM of the amplitude of the projecting peak can be seen in all of the curves in Figs.6 and
7, except Fig. 6 (a).

Fig. 6(a) in eq. (10) is a simple cosine curve constructed by the continuation of only the projecting peaks with
the amplitude of 2 (=,+1), as a special treatment without damped waves seen in others. Eq. (10) is
conventionally applicable to, for example, the first observed beats of the sound waves, such as those produced
by two tuning forks with different frequencies, which is in long waves with low directivity without rigid
limitation such as given by the Bragg law. Optical beat was first observed by Forrester et al.’® In order to obtain
two waves of slightly different frequency, which is important to distinguish the waves, they use the energy level
splitting of Hg atoms of a discharge lamp due to the Zeeman effect was used. The emitted light contains two
components of frequencies v, and v, which differ in proportion to the applied magnetic field. When these
components are recombined at the surface of a photoelectric mixing tube, the beat frequency v;-v, is generated.

The photoelectric current was proportional to y %(¢).3

IVC. The AM effect of the binomial distribution on bare PB and its
projecting peaks
IVC-i. Analysis of intrinsic PB by BD.

The number of different paths, counted based upon Cd7 7 (r=1,2,++,]) by way of Fig 5(b), is derived from
the degree of d and ¢ according to their permutation in Fig. 4. In the case of a mono-layer crystal of /=1 in Fig.
8(a), an incident photon splits into the two components by (d+7)'= d+t of BD in eq. (15) as follows:

[1] The diffracted photon d 1 diffraction (no. of d: odd)

[2] The transmitted photon ¢ O diffraction (no. of d: even).
Considering BD of (d+1)'=Cod+Cit=(1/2){[1]+[2]} from PT (Table IV), both of the diffracted and transmitted
photons in eq. (16) are given by

Wi (6)=(A/2)sin (0, +Aw)t and W, (1) =(A4/2)sinwt,
respectively. The bare diffracted and transmitted photons without BD are expressed by

W' (t) = Asin(w, +Aw)t and V' 7(t) = Asin ot
in egs. (19) and (17), respectively. The AM effect of BD on them is found to be half of the amplitude. It is clear
that they could not form PB but only the Bragg spot, since there is only one photon in each diffraction and
transmission in Fig 8(a).

In the case of /=2 in Fig. 8(b), the spacing in the double layer crystal is equal to d cot f in eq. (9) and the
multiplicity /=2. Here, the order of the letters d and ¢ in Figs 8(b) represent the reflection process due to the

elapsed time. Then, for example, d * ¢ is not equivalent to ¢ * d as a process stated in the section IVA. Emitted
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photons from (d+1)? = d+ t+t-d+d-d+t-t of BD in eq. (15) are represented as follows:

[1] Diffracted photon d-t 1 diffraction (no. of d: odd)

[2] Diffracted photon t-d 1 diffraction (no. of d: odd)

[3] Transmitted photon d-d 2 diffraction (no. of d: even)

[4] Transmitted photon tt 0 diffraction (no. of d: even).

In Fig 8(b), the diffracted photons from d- ¢ and ¢-d successively at the 1st and 2nd layer in order are together
expressed by eq. (16) as follows:
Wi (6)=(A/2)sin(w, +Ao)t,

Therefore, the diffracted photons from d-¢ and ¢+d could not form PB, since there is no difference in the
frequencies to form a beat between [1] and [2]. Intrinsic PB formed by the superposition of the transmitted

photons of [3] and [4] by d-d and ¢+t at the 1st and 2nd layer are given by eq. (16) as follows:
(] < 4/2)

w2 (£)=(2sin(w, + Ao)cosAwr. (W
While the bare diffracted photons and bare transmitted PB are given by
1=2

7
by egs. (20) and (18), respectively. The AM effect of BD is found to be half of the amplitude. As a whole, the

(t)= Asin(w, + Aw)t and @' (t)=245sin(w, + Aw)tcos Aot

2
sum of [11+([2]+[3])+[4]=d" t+(t-d+d-d)+1- 1 in Fig 8(b) becomes BD of (1/2)" . ,C, = (1/2)* (142+1), which
r=0

satisfy PT (Table IV).
In the case of /=3 in Fig. 8(c), the six kinds of the emitted photons from (d+7)* of the triple layer crystal by

BD in eq. (15) are described as follows:

[1] Diffracted photon d-tt 1 diffraction (no. of d: odd)
[2] Diffracted photon d-d-d + t-d-t 3 and 1 diffraction (no. of d: odd)
[3] Diffracted photon ttd 1 diffraction (no. of d: odd)
[4] Transmitted photon d-td 2 diffraction (no. of d: even)

[5] Transmitted photon d-d-t+ t-d-d 2 diffraction (no. of d: even)
[6] Transmitted photon ¢-¢-¢ 0 diffraction (no. of d: even).

In eq. (16), both intrinsic PB of the diffracted and transmitted photons are given by

1=3

vl (t)= (34/8)sin(@, + Aw)t +(A4/8)sin(w, +3Aw)t (v, @] <4/2)
and

=3 =3
W

trans

(t)=(4/8)sinw,t +(34/8)sin(w, +2Aw)t, (w
respectively. Both bare PB without BD are given by

trans (t)| S A/2)
w7 () = 24sin(w, + 2A0) cos Awt
by eq.(19), and
W' (t) = 24sin(w, + Ao)t cos Awt
by eq. (17). The AM effect of BD could be found in the sum of the coefficients A/2 in l//g[,;; (l ) and l//t’;f“ (t ) ,
which are a quarter of 2A iny 53(#). In Fig 8(c), [11+([21+[4D+ (B1+[S)+[6]=d t-t+ (d-d-d + t*d -t + d-t-d) +
3
(ttd+d-d-t+t-d-d) + tttsimilarly satisfies PT in BD of (1/2)* Z 3 C=(1/2)* (1+3+3+1) (Table IV).

r=0
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To characterize a new PB from the superposition of three waves, in a manner similar to the case of /=4
without the distribution diagram of optical path, the eight photons from (d+1)* of BD in eq. (15) in the
quadruple layer crystal are as follows:

[1] Diffracted photon dettt 1 diffraction (no. of d: odd)

[2] Diffracted photon d-t-d-d+d-d-d-t+t-d-t-t 3 and 1 diffraction (no. of d: odd)

[3] Diffracted photon d-d-t-d+t-d-d-d+tt-d-t 3and 1 diffraction (no. of d: odd)

[4] Diffracted photon tettd 1 diffraction (no. of d: odd)

[5] Transmitted photon dettd 2 diffraction (no. of d: even)

[6] Transmitted photon d-t-d-t+d-d-d-d+t-d-t-d 4 & 2 diffraction (no. of d: even)

[7] Transmitted photon d-d-tt+t-d-d-t+tt-d-d 2 diffraction (no. of d: even)

[8] Transmitted photon tetetet 0 diffraction (no. of d: even).

Both intrinsic PB of the diffracted and transmitted photons in eq. (16) are represented as follows:

wii(t)= (4/4){sin(o, + Aw)t +sin(w, +3Aw)t}

I=4

=(A4/2)sin(w, +2Aw)t cos Awt ( Vo (1)< 4/2)
and
Wi (1) =(4/16) sin wyt + (64/16)sin(w, + 2Aw)t
+(A/16) sin(w, +4Aw) | (v )| < 4/2)

trans
which is constructed by three waves with different amplitudes and frequencies as the first new PB. The bare PB
of the diffracted and transmitted photons is represented by
w'™(¢) = 24sin(w, + 2A0 )t cos Awt
by eq. (20) and
sin(w, +2Aw)t- sin3Aot
sin Aot

=44sin(w, +2Aw)t-sin(Awt + 7/3)-sin(Aot + 27 /3),

()= 4

by egs. (18) and (III-6) in App III. Considering i 5*(f) < 3 as shown in Fig 6(b), it is apparent that the sum of the
=4

coefficients A/2 in ng;;m (¢) baries from a quarter of 2A in  =*(¥) to a sixth of 3A in y £*(¢). From the above

distribution of optical paths, PT is confirmed by [1]+{[2]+[5]}+{[3]+[6]}+{[4]+[7]}+[8]=

4
(172)* Y, 4Cr =(172)*(14+4+6+4+1) (Table IV).

r=0

IVC-ii. Remarks on the AM effect of BD on PB, including the projecting peaks.
Figs 9(b), (c), (e) and (f) show four curves of intrinsic PB of ¥ = (t), l//f,,:ﬁ3 (t), W

trans trans

(t) as a new beat
and ¥ f,l:f;‘ (t), respectively. It should be noted that all of these curves show the very clean and accurate
interference fringes consisting of periodical pairs of a maximum and a minimum or belly and node as the
transmitted and diffracted PB as discussed in ref. 38. It is evident in eq. (22b) that the height of the projecting
peak and the beat wave number of i =*(f) could be determined from [,=2. Therefore, both bare PB of i =3(7) and

w549 are perfectly identical from the sum frequency of wo + 2Aw. However, the intrinsic PB of both
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Wf,,:; (f ) and l//f,;? (f ) in Fig 9(c) and (f), respectively, is modulated in amplitude due to the cross product
between i =**4(r) and BD. Similarly, from the sum frequency characteristic wo + Aw, Fig 10(a) displays the
curve of bare PB of y 53(¢), which should fit the curve of intrinsic PB y 75,,(f) modulated by BD in Fig 9(b).
Curve of Fig 9(e) is the new intrinsic PB from three different photons described by i (1. Fig 10(b) shows the
curve of bare PB of iy F*(f), whose envelope in eq. (22a) is shown in Fig 6(b). The remarkable variations
influenced by both the projecting and damped peaks in Fig 10(b) could not be perfectly found in Fig 9(e) and
reformed to the typical interference fringe by AM effects by BD.

All of the prominently projecting peaks shown in Fig 6 emerge at m r (m=1,2,- - +) in eqs. (24a) and (24b),
which coincide with the base angles and the midline in PT in Fig 4. They are remarkably contracted by BD in
Fig 9 in the case of /=3 and 4 as well as /[=2. Generally, according to the AM effect of BD indicated in the
section IVA, the expected values of the relevant projecting peaks with the height+ (/, + 1) and = [, in egs. (24a)
and (24b), respectively, could be contracted as follows:

4! N /£ DBLA)| }_ L
it d"'e (&0 D/DBLd) 2

r=l-lorl

/
l o ~
z:{zj =7 =t =0.7 (I>>1).

For example, the peak values of = (I+1)/2! are estimated to be £ 1 for I=1, + 3/4 for [=2, + 1/2 for [=3, = 5/16 for
=4, -+, £155,934/2!5593 for [=155,933, which decrease steeply with increasing . All of these values are
rapidly contracted as if erased by AM effect of BD in Fig 9.

From the considerations of the multiple reflections in the crystals from 1 to 4 of / in the preceding section,

‘l//tdr;;;_” (t)‘ <

L (t)‘ in eq. (23) is generally satisfied due to AM effect of BD. Especially, there is clear evidence in
support of eq. (23) in all intrinsic PB, in which amplitudes of Wrdr;;vs (t) are contracted from a quarter of the
amplitudes of two wave bare PB to a sixth of those of three wave bare PB.

It is clear from the superimposed graphs of y ay(#) and y 5(7) in Fig 9(d) that the periods of both PB are to
be 2 7 sec. as seen in the envelope of "cos " in eq. (22a) (Fig 6(a)). In the graphs of y bi(¢) and wff,}(t) in Fig
9(g), they have the appearance of a coincidence between their periods, in opposition to the fact. The period of
W o(1) is determined to be 7 sec. by fl0) = i) = 3 from the envelope as f(f) = 4sin(-¢ + 1 /3)*sin(-¢ + 2 7t /3)
defined by eq. (22a) (Figs 6(b) and 10(b)). In spite of the difference of the period, the superimposition of
W brans(f) ony l54(¢) in Fig 9(g) is reasonably understood.

In [ > 5, the pair appearance of PB by the transmitted and diffracted photons with more than two photons could
be similarly confirmed one by one in each term of (d+7)!, together with the validity of eq. (23), including the
disappearance of all the projecting peaks by AM effect of BD. It is important to stress that eqs. (17), (18), (19)
and (20) are reasonable as the bare beat formation formulas of PB. It allows me to frame a new definition of the
beat that is both comprehensive and accurate.

Although analytical forms of eq. (16) could not be obtained in the present work, it is important to understand

the results of PB caused by the multiple recoil reflections received double AM from both cosec Aw ¢ and B(/,d).
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The expected profiles of PB in eq. (16) might be considerably deformed due to the following factors: (i) low
photon counting rate of the detectors, (ii) slow A-D converters, (iii) overflow or miscount of the photons (iv)
local damages, unevenness or corrugation in both surfaces of the crystal and their parallelism, (v) unsuitable
time-constant for the measuring instrument system, (vi) convolution of the response and resolution function of
the instruments, etc. It is apparent that the factors cause either broadening or narrowing of the PB profile in
each. For example, an uncertainty in the thickness of our GaAs crystal is estimated to be Ay / u = 0.03 as
determined from non-parallellsm and roughness of the surfaces. From eq. (22a), two types of the transmitted
and diffracted PB comprise both eq.(17)/eq.(18) and eq.(19)/eq.(20) hybrids from the uncertainty of A /,. Based
upon a careful error analysis of PB, it is important to reveal the true character of it with high fidelity as an

evidence of the hypothesis regulated by the modified Bragg law and BD in the present work.

V. Confirmatory Experiment

The four evidences mentioned in Introduction, namely the detection of PB in heavier crystals of InAs, GaSb
and InSb than Ge provide a good test for the theory presented. They should be repeated if possible, at low
temperature, because the occurrence of PB in those crystals has not yet been observed in spite of great
expectation.

In order to examine the temperature effect on PB, it is desirable to use A () of reciprocal PCRRA. As stated in
the section II, the inequality of 0 <A(#) <1 in the temperature range from zero degree Kelvin to the melting
point qualitatively expresses the temperature dependences of the rate of the recoil reflection. Generally, the
D-W factor D(#) quantitatively represents the fraction of the recoil-free reflection®® and the cofactor of 1-D(f)
the fraction of the recoil reflection known as the thermal diffuse scattering in the total reflection

D) +{1-D(}=1 (25)
closely relevant to the Bragg law in eq. (7).2"** Therefore, to discuss quantitatively the temperature dependence
of PB, 1-D(¢) instead of A () could be effectively used.

The temperature variations of D(¢), 1-D(f) and ® (¢) in eq. (1) for Si*! with the high Debye temperature and for
Al with the low value are tabulated in Table V. Both PB were observed at room temperature.®’ The function of
@ (¢) is the commonly used function for all of materials.*>*’#! Each individual of Si and Al is quite different
from each other in D-W factor in dependence on the Debye temperature and the Bragg condition.

Generally, a crystal with the high Debye temperature is a high rigid crystal as stated. The reduced
temperature, ¢ in place of 7, which is properly contracted by ®p, is a relevant measure of the degree of the
crystal rigidity. It is shown in Table V (a) and (b) that ¢ dependences of ® (f), D(t) and 1-D(t) in Si with the
higher Debye temperature are more insensitive than those with lower values. However, in common with not
only Si and Al but also others materials, the higher the Miller indexes become, the more remarkable are D(t)
and 1-D(t) coupled with those in eq. (1) vary.

As one of the confirmatory experiments, it is very important to observe the decreases of the intensities in all
of PB in Si(hh0) following with roughly reductions by half in 1-D(t) depending on the temperature changes
from 300K to 77K, since those in all of the Bragg peaks slowly increase by eq. (25) in Table V(a). In Al, both
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D(t) and 1-D(¢) greatly change over the temperature from OK to 300K in Table V(b). It definitely indicates as a
confirmation experiment that the integrated intensities of all PB in Al fade into quantum PB with decreasing
temperature. As complementary event of PB in eq. (25), Nicklow et al reported in detail that the X-ray
reflection intensities of Al increase with decreasing temperature, not only in (200) but also (hh0) and (hhh),

30,42 in

together with the increase of 4.> The fade-ins in the Bragg peaks in Al(200) with decreasing temperature
eq. (25) qualitatively show good agreement with the result of ME in Fig. 2, in spite of the presence of the factor
"one fourth" instead of sin® @ g(< 1] in D-W factor of ME.?>?72 It suggests as test experiments that all of PB in
not only Si and Al but also other all crystals resulting from the multiple recoil reflections should fade out in
response to the decrease of 1-D(f) with decreasing temperature. Consequently, it is considered that, although
there is a large or small scale in temperature dependence of variations of PB due to the high or low Debye
temperature, patterns of the Bragg peak observed at high temperature fade in with decreasing temperature but
inversely those of PB fade out into quantum PB as a limit at OK respectively.

The value of D(0) due to the zero point vibration caused by the quantum effect is important at low
temperatures. Considering the magnitude of 1-D(0) >0.02, which is nearly equal to about half value of the
minimum one of 1-D(0.433)=0.0392 of Si in Table V(a), it indicates that all of the PB strongly survives as the
quantum PB due to the zero point vibration down to the absolute zero point, within a limitation of A (0)# 0, for
an imperfectly rigid crystal. Therefore, the observation of quantum PB, implying the complete absence of the
elastic reflection in X-ray scattering is very interesting is an important test for validation experiments. Then, it is
reasonable to expect that all of PB fade into quantum PB at very low temperature.

In our work, fundamental accounts of the particulars of PB, including PCRRA and experimental
confirmations and understandings of the mechanism of the new beat formation, still remain to be carried out.
They are not the main purpose in this work. The principle of the formation of beat from the multiple waves from
more than two waves in X-ray is simply developed from the general physical viewpoint, independently of
DTXD. The results encourage us to propose straightforward experiments to test the theory and to characterize

the nature of the beats, apart from the old framework of PB.
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Appendix I. On the principle of the equipartition of the recoil energy

Prior to ME, the analysis of the kinematics of y-ray absorption in the nuclear physics was usually carried out
for the case of a free atom. This is based on the fundamentally sound concept that the energies involved in
nuclear reactions are so much larger than the energies of chemical binding that the atom may well be thought of

as a free atom when analyzing nuclear events. However, it is possible to obtain Bragg reflection only for a

22 | RILEFEXF



Attempt to Construct an Alternative Formation Theory of Beat Applied to the Pendelloesung Beat and Proposal of its Confirmatory Experiments at Low Temperatures

crystal, which is formed by a set of the tightly binding atoms, not free atoms. Therefore, the use of eq. (2) has
been unreasonable in the solid-state physics. It is very important to introduce the recoil energy shared by all
constituent atoms based upon the principle of the equipartition of it.
Let us consider a crystal of N atoms with the mass of m, into which the recoil velocity v is assumed to be
equally parted. The absorbing atoms are assumed to be moving with velocities u; at [ site, so that the linear
N
momentum of the system before absorption of the photon comprises mE u, and Ey/c is the X-ray photon
I=1
momentum, which is assumed incident in the z-direction. After the absorption of X-ray photon, the linear
N
momentum of the system is the excited atom plus mz (u”/ +v/N ) based upon the principle of the equipartition
1=1
of the recoil energy. From the conservation of the linear momentum of the system, equating the components of

momentum before and after the absorption of X-ray photon yields

N EO N v
mzul// t—= mz U, +— (I-1)
=1 C 1=1 N

N N
mYu, =mSu,, (1-2)
=1 1=1

where the sign of // is parallel to z-direction and _L perpendicular to that. It follows from eq. (I-1) and (I-2) that
the recoil momentum is given by

a (1:3)

my :i
N 2,

mv_ 1 By
N N c
where Ey = hc/ Ao. The recoil velocity is independent of the initial velocity of the atom. Let us consider the

conservation of energy. Before the absorption of X-ray photon, the system consists of the energy of X-ray

N

photon E, and the kinetic energy of the crystal as (M/ 2 )z (ulz Vi +u12 l)- After the absorption, it consists of an
=1

excited state with the energy E, and its kinetic state including the recoil velocity. Similarly, equating the

energies before and after the absorption of X-ray photon yields:

m m< v Y
E, +_Z(u12// +”l21_)= E, +_2 U, +— +”121_ . (I-4)
2493 293 N

By using eq. (I-3), the difference between E, and E, from eq. (I-4) is given by

2

1 mv? mv ¥
6E:E6_E0:_E.T_qu”/'
=1

E N
——E,-—2Nu,,, I-5
R NC; 1/ ( )

where the first term in eq. (I-5) is the recoil energy given in eq. (2) of

E, :M:L.[ﬂ) (1-6)
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The second term in eq. (I-5) is the sum of the Doppler effect in each atom. A similar expression to the above
could be derived in case of the emission of the photon.

If the recoil energy of (I-6) is valid independent of 7, ME can be observed very easily even at room
temperature. Therefore, it is reasonably apparent that the effective number N should be fixed through the

temperature dependence of the rigidity of the crystal by the inverse PCRRA of

AT) = % . (1-7)

Then, eq. (I-3) is expressed by

A(T)mv N N o A(T)Z- (I-8)

The factor ¢ (T) might be expressed by something like the modified D-W factor. By use of eq. (I-7), the upper
end of the common summation of [ in eqs. (I-1), (I-2), (I-4) and (I-5) is replaced with [N/ ¢ (T)], where [] is the
Gauss' notation, which represents the greatest integer less than itself. For example, eq. (I-4) can be represented

by

V8] m [v/s ()] 6(T)v 2
EOJFE Z(”/z//"'“/zL):Ee"'E' z [“///+ N }"'”/ZL )

1=l =
whose recoil energy part of the right side becomes as
2 5 N 2 4 [ Nm ¢ 2Nm | ¢ 2N peppa (Tym | ¢
where, from eq. (I-7),
[A (D=8 (T)N1= N pges (1. d-9)

The above expression satisfies the equipartition of the recoil energy.

Appendix Il. On the bare beat formation formula-(i)
By using sin[ @+ r @ Jsin § /2=(1/2){cos[ @ +(r-1/2) @ ]-cos[ @ +(r+1/2) ]}, the summation of both sides of

the following recursion formula from zero to n becomes
r=0: sin © sin6/2=(1/2){cos[ ©@ — 6/2] -cosFO—=FO2]}
r=1: sin[@+ 0] sin 0/2=(1/2) {eosfOF 0/2] - cosf&F30/2]}

r=n-1: sin[ © + (n-1)0 ] sin@ /2=(1/2) {cos| @+(=1=172) 0] -cos[ @ +r1F172) 0]}
+)r=n: sinff®@+ nh] sin9/2:(1/2){m -cos[O@+(m +1/2) 0]

{isin[@) +r9]} sin@/2=(1/2){cos[ © -0/2]-cos[ O+(n+1/2)01}

r=0
—sin [@ " ﬁ] sinw _
2 2
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Considering sin % #0in 0 < f <2 7, the following expression could be obtained to be

+
., sin|:® + nze:l sin ( 21)9
Y sin[© +r6]= (I-1)
r=0 ] 9
sin —
2
Alternating series of eq. (II-1) could be expressed as
+ + +
sin[@ + O +n )]sin (DO +7)
2 2 . (11-2)

Z:(;(—l)’sin[®+r0]= —oin
’ Sm

Eqgs (II-1) and (II-2) represent the basic formulas of the bare beat formation by multiple superposition of the
transmitted and diffracted photons as a simple algebraic sum, in utter disregard of the probability distribution of

the transmitted and reflected photons.

Appendix lll. On the bare beat formation formula-(ii) from the formula-(i)

The following finite direct product is expanded as a series of

Z"ﬁsin(e +r—:n)— 2”ﬁ% . {ei(m;*in] _ ei[m;*llnj}
n i

r=1 r=1

i—2m
n+l 1 n+l i20 ntl .n n+l
e .e -1 1 —i—r . .
=== =  l_on | e 2 .o .Il(a)il‘e'ﬂ’_l)
. r—1 . r
=1 21 i— i0 2l =1
e ntl e’

= (_ l)n e (%) {QnH ’ (e1'29 )”H T (_ 1)1 ’ Qn ’ (eizo )n te
l
+(_ l)n'Ql .(eiZG )+(_1)n+1}’ (III-1)

where i* = -1. By using

o, = (e i = (1), (0<s<n) (r-2)
as the (n+1)-th root of 1, the polynomial of x¥™*! -1 could be resolved into the factors as:

¥ -l= (-0, )(x-0)- (r-o,)

=" 4 (— 1)1 len + (— 1)2 szﬂ—l 4+t (_1)n an + (_ 1)n+1 Qnﬂ , (I11-3)
in which
Q, = ijlez ;. (ISsSn), (I11-4)
0<jy<r » *<jy<n

From the comparison of the coefficients in the both sides of eq. (III-3), the next expressions are obtained to be

{QS =0(1<s<n)
n (ITI-5)
Qnﬂ = (_ 1) °
Using eqgs. (III-2), (III-4) and (III-5), eq. (III-1) successively becomes as follows:
e irhe 5 " 1 ) y
_ _1 n . _1 nooi (n+1)0 + _1 n _ - i(n+l) _ i(n+1)
1) S e e -
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n+l I"—l n 7
ssin(n+1)0=2"||sin|0+——x [=2"sinO] | sin| 0 +——7 |. i
e e R B Ot S

r=1 r=1
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Table l. Typical example of the observed Pendelloesung Beats.

Materials Atomic Atomic Debye-Waller Factor | Ref.
number Weight
7% M* ©,(K) | Ec(keb)
Hexamethaline
Tetramine
N4(CHa)s 34 6.37 2
C (diamond) 6 12.011 | 1874 24.5 4,5
LiF 6 12.970 | 732 15.9 1
Dolomite
MgCa(CO3), 9.2 18.440 6
Quartz
Si0, 10 20.028 | 470 15.8 1
Al 13 26.982 | 390 16.7 7
Si 14 28.086 | 692 22.7 1,3
Cu 29 63.546 | 310 22.9 8
Zn 30 65.39 | 237 20.3 9
InP 32 72.897 | 321 25.0 10
GaAs 32 72.323 | 344 25.7 11-14
Ge 32 72.61 | 403 279 15
InAs 41 94.871 | 249 25.14 None
GaSb 41 95.737 | 266 26.10 None
InSb 50 118.285 | 203 25.35 None

Effective atomic number Z* and atomic weight M* are temporally defined by
Z*=2n,Z,./Zn,. and M*=2n,M,./2n,,

where n;is number of the i element for compounds. The quantity E¢ of the 4-th column
is defined by (mc*k,0©,/3)"*, which the weighted geometrical mean between mc’ and

k,©, > where ©, iscited from the reference 16.
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Table Il. Data of the sample used for measurement of PB in GaAs.!'""
Lattice Sample size N(atoms) | Eo(keV) | A, (nm) | o (rad/sec)
constant(nm) thicknessXarea GaK
0.56419 200umx10*cm’ | 8.91-10% | 10.268 0.1207 1.56-10"
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Table lil.

Various physical quantities of GaAs determined from the experiments.

/ 2ER(keV) Aw (rad/sec) | [Aw (rad/sec) | Ngr(300K)
eq. (9) eq. (4) eq. (8) eq. (8) eq. (4)
155,933 11.41-10 " 2.19-10° 3.42-10" 1.42-10"
L, (m) T (sec) (A2/2),, §(300K) A(300K) A2 (m)
ror GaAs eq. (11) eq. (12) eqs.(8)&(12) | egs. (8)&(12) | eq. (12)
110.08-10°° | 3.67-10°" 2.19-10°° 6.26:10° | 7.03-10°" 2.64:107"°
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Table IV. Pascal's triangle used for the Borrmann fan and the Binomial Distribution in Fig 4.

(l) I L — o
C= |5 =t =(1/2)
r| (I-nrr

1=0 0Co=1 (1/2)°=1
=1 C,=1 ,C,=1 (1/2)'=1/2
=2 ,C,=1 ,C,=2 ,C,=1 (1/2)*=1/4
=3 ,C,=1 ,C=3 ,C,=3 ,C,=1 (1/2)*=1/8
=4 .C=1 ,C=4 ,C,=6 ,C,=4 ,C,=1 (1/2)*=1/16
=5 C,=1 ,C,=5 .C,=10 ,C,=10 .C,=5 .C.=1 (1/2)°=1/32

The binomial coefficient satisfy the following relations:
,C.=,C,, (fromthe bilateral symmetry)
and

,C.=,,C ., +,,C. (fromthe Pascal’s formula).

r
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Table V. Temperature variations of D(t) and 1-D(t) for Si and Al.

By using the energy dispersive Bragg law of dE, sinf, =0.6199, D-W factor in eq. (1)

is rewritten as follows:
D(t) = expl- (E, sin 0, /B, ®(1)} = expl- (d, [a) (h* + K+ )0(0)},

where « is the lattice parameter of 1/d”> = (h* +k> +1%)/a* .

(a) D(f)=exp{-5.0572-10° h*®(¢)} and 1-D(¢) for Si(hh0), where a=0.5431nm.

(hho). 1 0(0K) 0.111(77K) 0.433(300K)
(1) 1 1.073 1978
(220). D(1) 0.9800 0.9785 0.9608
1-D(1) 0.0200 0.0215 0.0392
(440). D(?) 0.9223 0.9168 0.8521
1-D(1) 0.0777 0.0832 0.1479
(660). D(?) 0.8336 0.8225 0.6976
1-D(1) 0.1664 0.1775 0.3024

(b) D(t)=exp {- 0.0252h°®(t)} and 1-D(¢) for Al(hhh), where a=0.4050nm.

(hhh). t 0(0K) 0.197(77K) 0.769(300K)
(1) 1 1.251 3.221
i, D(t) 0.9751 0.9690 0.9220
1-D(t) 0.0249 0.0310 0.0780
(222). D(t) 0.9041 0.8815 0.7228
1-D(?) 0.0959 0.1185 0.2772
(333). D(7) 0.7971 0.7530 0.4817
1-D(?) 0.2029 0.2470 0.5183
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Figure captions

Fig 1.

Fig 2.

Fig 3.

Fig 4.

Fig 5.

Fig 6.

The recoil energy loss Ex (meV) versus the photon energy E, (keV) for all free single atom with some atomic
weights of M,=0.004kg/mol (He), 0.012kg/mol (C), 0.072kg/mol (Ge), 0.100kg/mol and 0.200kg/mol. PB has
been observed in a region within abcd from the range over 10keV < E, < 60keV and 0.74meV<ER<
161meV.

The effective resonance absorption cross section per °'Ir nucleus, for the absorber crystal at 88K and
the source temperature given by the abscissa. Experimental data are reproduced from the reference 17.
Here, the Debye temperature ® p of 318K is used at 88K. The Debye temperature of Ir exceptionally
changes over a range from 228K at 298K to 425+ 5K at OK'®, which promotes the absorption cross

section.

Schematic diagram of the multiple Bragg reflections of an incident X-ray photon with the Bragg angle
of 5 in the crystal net plane with the discrete spacing of dj, in order to derive the modified Bragg law

due to the recoil reflection based upon the corpuscular nature of the light.

Schematic diagram of the multiple reflections of an incident X-ray photon with the Bragg angle of 05
in the crystal net plane with the discrete spacing of dj. The triangle in the Laue case is called by the

name of the Borrmann fan in DTXD.

Schematic diagrams of a step of the multiple reflections of an photon used for counting the optical
paths.

(a) The alternative of the G-wave (G) paralleled on the first diffracted photon or O-wave (O) paralleled
on an incident photon in the two wave approximation in DTXD.

(b) The alternative of the flexion (d) or the beeline (7) at each reflection point used for counting the

number of reflection.

The curves of (a) =1, (b) [,=2, (c) I,=3, (d) =4, (e) [,=19, (f) ,=20, (g) ;=29 and (h) [,=30
reproduced from egs. (22a) and (22b) are shown by plotting over an angular range of —25° <Awt <

385°. For form's sake, [ in Fig. 4 is replaced by /.

Fig 7(a). =9 and (b) /;=10.

r=1

h

. . T rrT .
The function of sin(/,+1)Aw?t cosecAwt :2"HSIH Awl+m in eq. (22a), together

i I e rrm . . . °
with sin(l,+1) Awt | = 2" [ [ sin| Aot + Tl plotted against angular region of -25° <(l+1)A
r=0 h

wt< 385°. In these curves, the intrinsic sine functions of sin(/,+1) Aw t (1,=9 and 10) are modulated

#E %55 | 33



in amplitude and frequency by cosec Aw .

Fig 8. The optical paths and the transmitted and diffracted photons obtained using the way of Fig 5(b) in the
multiple reflections of an incident photon.
(a) the mono-layer crystal (I=1).
(b) the double layer crystal(/=2).
(c) the triple layer crystal (/=3).

Fig 9. Some typical patterns of intrinsic PB reproduced from eq. (16) over a time range of 0 < 7 < 4.5 in the
case of w o = 20rad/s, Aw= -1 rad/s and A=1.
(a) An incident beam of i (f) = sin 20z.

3
(b) w2 (t)= (1) Z(ZszinpO2p]t—;sin20t+2sinl8t

2) =

1
(©) l//d,,f ( JZ( JstO (2p+1)]t=fsm19t+ésml7t

1 3
tmns

(d) For comparison, () and w! (¢) are superimposed one over another.

2 1 6 . 1
DY E sin|20 - 2 p|r = —sin 20¢ + —sin 187 + —sin 16¢
v 0=(5) 3, o 2pl= s S

=0

1 4 1
v () =] = sin|20 - (2p +1)[t=—(sin19¢ + sin17¢) = —sin 18¢ cost
OV ()= (2);[2p+1) 20 @2p )= -1

(g) For comparison, ¥ nm( ) and Wﬂl,; (t) are superimposed one over another.

Fig 10 (a) and (b) w > and y £* reproduced from eqs. (17) and (18), respectively, over a time range of 0 < 1<
4.5 in the case of w ¢ =20 rad/s, Aw= -1 rad/s and A=1.
() 53(1) = 2 sin 191 cost in eq. (17).

(b) w £4(t) = 4 sin 18¢ sin(-t.+ 7 /3) sin (-++2 7 /3) in eq. (18), in which the function of f{t)= 4 sin (-t+ 7
/3) sin (-t+2 7t /3) is shown in Fig 5(b).
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Fig 1.

M.=0.004 M.=0.012

102
/

/ M.=0.072
/ /I
/ / M.=0.100

/ / b M.=0.200

R /[ 1/

™~
™~
™~
I~

Recoil Energy Egr(meV)

ARV,
[/
S /]
[/

10 20 40 60 80 100
X-Ray Energy E (keV)

The recoil energy loss Eg (meV) versus the photon energy Ey (keV) for all free single atom with some
atomic weights of M,=0.004kg/mol (He), 0.012kg/mol (C), 0.072kg/mol (Ge), 0.100kg/mol and
0.200kg/mol. PB has been observed in a region within abcd from the range over 10keV < E, < 60keV
and 0.74meV<ER< 161meV.
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Fig 2. The effective resonance absorption cross section per '°'Ir nucleus, for the absorber crystal at 88K and
the source temperature given by the abscissa. Experimental data are reproduced from the reference 17.
Here, the Debye temperature ® p of 318K is used at 88K. The Debye temperature of Ir exceptionally
changes over a range from 228K at 298K to 425+ 5K at OK'S, which promotes the absorption cross

section.
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Incident photon

hk O s cot OB

AN

f dit |

/fl\k\o-Z( - A()mvo

ATym v |_6s ] g
: :> z-direction :)pz
K ADmvo [ 0 \ T

-
fik-24AN7)m v

Y

Tiko-2/AT)m vy B\ Os fik-2(1-1) M(7)my

Diffracted photon Transmitted photon

Fig 3. Schematic diagram of the multiple Bragg reflections of an incident X-ray photon with the Bragg angle
of 5 in the crystal net plane with the discrete spacing of dj, in order to derive the modified Bragg law

due to the recoil reflection based upon the corpuscular nature of light.
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Incident Photon
0O

Fl1

d nkr

/=

4

AV |
JRAvAvAvAYA

A

Transmitted Photons
Diffracted Photons

Fig 4. Schematic diagram of the multiple reflections of an incident X-ray photon with the Bragg angle of 65
in the crystal net plane with the discrete spacing of dj. The triangle in the Laue case is called by the

name of the Borrmann fan in DTXD.
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(a)
An oblique incident photon
under the Bragg condition ——>
at the crystal surface
20,
G 1) G
(b) An oblique incident photon

<= under the Bragg condition —>
to each reflection points

20, 20,

Fig 5. Schematic diagrams of a step of the multiple reflections of an photon used for counting the optical
paths.
(a) The alternative of the G-wave (G) paralleled on the first diffracted photon or O-wave (O) paralleled
on an incident photon in the two wave approximation in DTXD.
(b) The alternative of the flexion (d) or the beeline (7) at each reflection point used for counting the

number of reflection.
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(a) /v (b)
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Awt= Awt=
sy (d)
(c)
: ‘ ‘ Awt= ’ Aot=

100 200 \3}/ v 100\/ 200 v W
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20¢ (e)

10

A
A Mo nn /\/\ﬂ ﬂf\/\/\nc?wtﬁ
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Fig 6. The curves of (a) /=1, (b) [,=2, (c) ,=3, (d) =4, (e) ,=19, (f) [,=20, (g) ;=29 and (h) [,=30
reproduced from egs. (22a) and (22b) are shown by plotting over an angular range of —25° < Awt <

385°. For form's sake, [ in Fig. 4 is replaced by /.
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Fig 7(a).

(a)
10
Awt=
JANANTA A | |
PR I S Vi i v iy
-5
-10

(b)

Awt=

A n n A nnannn
V\/\l/bo\/ 0

;=9 and (b) [,=10.

r=1

. . I b rm .
The function of sin([;+1)Aw? cosecAwt =2" HSln Awt + T+l in eq. (22a), together
h

. . A b rm . . . o

with sin(j+1) Awt | =2 I I sinf Awtf + Al is plotted against angular region of -25° <(+DA
r=0 h

wt< 385°. In these curves, the intrinsic sine functions of sin(/,+1) Aw t ([,=9 and 10) are modulated

in amplitude and frequency by cosec Aw .
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Fig 8. The optical paths and the transmitted and diffracted photons obtained using the way of Fig 5(b) in the
multiple reflections of an incident photon.
(a) the mono-layer crystal (I=1).
(b) the double layer crystal(/=2).

(c) the triple layer crystal (I=3).
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(®) (e)

Fig 9. Some typical patterns of intrinsic PB reproduced from eq. (16) over a time range of 0 < r < 4.5 in the
case of wo=20rad/s, Aw=-1rad/s and A=1.
(a) An incident beam of i (f) = sin 20z.

1

3
(b) v ()= (1) 2(‘;’ , ]sin[ZO ~2plt= ésin 201 + %sinl8t

2 p:O

1

: 1Y (3 . 3. 1
(c) Wf,,.j;(t)—[z) 2{2p+1Js1n[20(2p+1)]t—8s1n19t+851n17t.

p=0
(d) For comparison, ) and ¥/, 7 ( ) are superimposed one over another.
(e)wi*(t)= i sm[20 2p t:ism20t+£sm18t+isml6t
= 16 16 16
ll/éy;f ( )sm 20~ (2p+1)]t——(sm19t+s1n17t) —%smlStcost
(2) For comparison, W' * () and ¥, i *(¢) are superimposed one over another.

E %55 | 43



(a)

L aALULLL,
T L

(b)

| Mm/\ L

VWWZV \/“W

Fig 10 (a) and (b) w * and y ©* reproduced from eqs. (17) and (18), respectively, over a time range of 0 < 7 <
4.5 in the case of wo = 20 rad/s, Aw= -1 rad/s and A=1.
(a)  53(1) = 2 sin 191 cost in eq. (17).
(b) w £4(t) = 4 sin 18t sin(-t.+ 7 /3) sin (-t+2 7 /3) in eq. (18), in which the function of f{t)= 4 sin (-t+ 7
/3) sin (-t+2 7 /3) is shown in Fig 5(b).
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